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Abstract: Contact-rich interaction with the world is crucial for many challenging1

robot manipulation tasks, such as handling delicate objects or providing physical2

assistance to humans. Unlike commonly used rigid manipulators, soft robotic ma-3

nipulators can interact safely and robustly with large distributed contact with the4

world. However, contact sensing for soft robots has been difficult because embed-5

ding sensors into soft bodies introduces rigidity, which undercuts the benefits of6

such compliant systems. In this paper, we present MOE-Touch, a method that rea-7

sons about contact conditions for soft robots by observing deformation. We intro-8

duce and test the idea that contact conditions and contact object geometry can be9

inferred by observing contact deformations in a compliant and soft robot manip-10

ulator. We propose Multi-finger Omnidirectional End-effector (MOE), a soft ma-11

nipulator capable of safely interacting with delicate surfaces. We use a mesh en-12

ergy optimization-based method for multi-shape estimation of MOE’s deforming13

state. We then use a Graph Neural Network (GNN)-based contact estimation mod-14

ule to predict distributed contact locations from deformation. MOE-Touch can ac-15

curately estimate contact with 3.03 mm Chamfer distance error, which is a 50.65 %16

improvement on the baseline. We then demonstrate an application of MOE-Touch17

shape estimation and contact localization modules for the reconstruction of an oc-18

cluded surface modeled as Gaussian Process Implicit Surfaces (GPIS) with aver-19

aged errors of 3.62 mm, and showcase the application of using MOE-Touch for20

grasping a piece of paper on a flat surface with an unknown orientation.21

Keywords: Soft Robotics, Contact Estimation, Manipulation22

1 Introduction23

Humans often make large distributed contact with objects in our daily lives. Such distributed contact-24

rich interaction with the world can serve two purposes. First, it enables us to perceive occluded25

surfaces and understand the underlying object geometry. For example, a hairstylist can pat a cus-26

tomer’s head to estimate the contour of the scalp underneath the voluminous hair and select feasible27

hairstyles. Second, manipulating certain objects unavoidably results in large contact. We can con-28

sider the example of picking up a piece of paper from a flat table, which we often accomplish by29

laying finger pads on top of the paper and bending the paper into the hand. In either case, our ability30

to perceive and reason about contact with the world is crucial [1].31

Common rigid robotic manipulators often cannot safely make large distributed contact, without risk-32

ing damage to the fragile hardware or the environment. Given safety concerns, most prior work re-33

lies on using costly or specialized sensors to avoid applying unsafe contact forces [2], and explicitly34

avoiding direct contact during human-robot interaction [3]. Contact avoidance is especially com-35

mon in work on assistive robotics, to ensure a user’s safety from rigid robots [4]. However, such36

constraints can produce overly conservative assistance that may be too slow and uncomfortable for37

human users [5].38
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Rather than avoiding contact, we target contact-rich manipulation scenarios for robots to embrace39

contacts safely to provide better assistance. To this end, soft robot manipulators offer unique ad-40

vantages compared to rigid end effectors. The inherent compliance of soft robot manipulators [2]41

enables robust control and mechanically aids in safe real-world operation [6]. This is especially42

relevant for delicate manipulation [7] and human-robot interaction [8]. The ability to deform with43

contact also makes them safer than rigid manipulators, applying significantly less force on contact-44

ing objects during collision. However, embedding contact and tactile sensors into such soft manip-45

ulators is an open challenge. Most previously proposed tactile sensors are either at least partially46

rigid [9] or limit strain [10], undermining soft robots’ advantages. The lack of effective and deploy-47

able contact estimation solutions for soft robots is a bottleneck to developing adaptable and intelli-48

gent soft robotic manipulators [11].49

Toward addressing contact sensing for soft robotic manipulators, we present MOE-Touch, a method50

for reconstructing a deformed soft robot shape and estimating its contact conditions for contact-rich51

soft robotic manipulation. MOE-Touch tracks the movement of keypoints on a soft robot manipula-52

tor and reconstructs watertight surface meshes of the deforming soft robot manipulator using a mesh53

energy-minimization method based on As-Rigid-As-Possible (ARAP) principles [12]. We show54

that this keypoint mesh optimization-based shape estimation method produces robust, high-fidelity55

shape reconstructions, providing more 3D shape structure compared to end-to-end learning-based56

approaches [13]. MOE-Touch then uses the observed deformations of the soft robot manipulator to57

predict points over the mesh that are in contact with other object surfaces. We demonstrate practi-58

cal applications of MOE-Touch with two contact-rich tasks. First, to reconstruct occluded surfaces59

during assistive-care manipulation tasks, we update a modified formulation of a Gaussian Process60

Implicit Surface (GPIS) [14, 15] model with the predicted contact conditions. We also show MOE-61

Touch in novel grasping tasks with 2D deformable objects such as paper on a flat surface, where we62

use MOE-Touch to predict the relative orientation of the surface to enable successful grasps.63

With MOE-Touch, we introduce the idea of reasoning about contact conditions and contacting object64

geometry from observed deformations of a soft robotic manipulator, which is a unique advantage of65

soft robots. Our key insight is that the deformation of soft robots can be an effective signal for contact66

conditions and configurations for soft robots. In summary, we make the following contributions:67

• MOE-Touch, a novel method for soft robotic contact estimation that reconstructs multi-finger68

manipulator shapes and accurately estimates contact conditions, by observing deformations with a69

GNN-based contact estimation model trained on simulated data to reason about contact conditions70

over the deformed shapes,71

• Implementation of MOE, a dexterous, multi-fingered, tendon-driven soft robotic manipulator72

capable of interacting safely with delicate surfaces that can be reconfigured to have different numbers73

of fingers,74

• Demonstration to estimate and reconstruct occluded surfaces, such as a human head under a wig75

or an arm under a hospital gown with relevance to assistive robotics applications where safe and76

accurate surface interaction is critical,77

• Demonstration of MOE-Touch and MOE manipulator on a novel robotic task of paper grasping78

from a flat surface with distributed contact.79

2 Related Work80

2.1 Soft Robotic Manipulators81

Soft robotic manipulators are typically characterized by their deformable and compliant constituent82

material [11]. They are becoming increasingly popular because of their ability to interact safely with83

delicate objects and environments [7]. A spectrum of soft robotic manipulators exists from partially84

rigid or functionally rigid-linked soft robotic manipulators [16, 17] to fully soft robotic manipulators85

that bend continuously [18]. Recent works have started to demonstrate the “mechanical intelligence”86
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of fully soft robotic manipulators, where their continuous deformation behavior contributes to the87

robustness and dexterity [19]. We primarily focus on such fully soft robotic manipulators in this88

work and explore their unique advantages in the domain of perception for contact-rich manipulation.89

2.2 Soft Robotic Sensing90

The compliance and deformation of soft robot manipulators [2] pose a challenge for perception91

and sensing [11] to determine the manipulator’s proprioceptive state. Soft robot proprioceptive92

sensing and shape representations must capture complex deformation patterns of the soft robot [13,93

20]. Conventionally, the shape of soft robots has been represented by parameterized 2-dimensional94

curves, which reduces the state estimation problem by modeling more tractable, low degrees-of-95

freedom systems. The most compact state representation uses a single degree-of-freedom curve96

with constant curvature, defined by its bending radius [21, 22]. More expressive representations97

construct multiple geometric primitives such as piecewise constant curvature models [23], multiple98

rigid frames [24], or rigid links [25]. These primitive representations have been used for dynamic99

control of soft robot manipulators [26]. However, these representations fail to capture volumetric100

information, and more deformation behaviors such as distributed, contact-based deformations [13].101

Some methods have been proposed to capture rich soft robot states using point clouds [27, 13], but102

they rely on learning a state estimation model to reconstruct shapes by training on large training103

datasets. Previous works have proposed both explicit representations such as meshes [20, 13] and104

implicit representations such as neural Signed Distance Functions (SDFs) for soft bodies [28, 29].105

Explicit representations are particularly convenient for this work because we can directly leverage106

the reconstructed body’s nodes and their correspondences for downstream tasks such as contact107

surface reconstruction. Recent work grounds shape reconstruction with mechanics-based priors,108

which yields more data efficiency and stable proprioceptive state estimation [20]. In this paper, we109

show how these methods can be extended beyond a single-finger proprioceptive state estimation110

without interaction to object interaction and robotic manipulation.111

2.3 Robotic Tactile Sensing112

We take inspiration from tactile sensors that use deformations on the surface membrane to infer con-113

tact points [30, 31, 9, 32]. Specialized tactile sensors such as GelSight [33] and Digit [9] can be114

attached to rigid end effectors to infer contacts [34]. Researchers have demonstrated promising ap-115

plications of these tactile sensors in reconstructing surfaces through touch [35]. Although such sen-116

sors can provide high-fidelity tactile and texture information about the contacting surface, they re-117

quire contacts to occur on the small sensorized contact region, which constrains sensor configura-118

tion when used in robot manipulators [34]. Furthermore, tactile sensors tend to be difficult to embed119

into soft robots without introducing undesired rigidity [36]. Prior work demonstrated that soft robot120

manipulators deform significantly with contact [37, 20]. In this paper, we show how contact defor-121

mations of a soft robot manipulator can be utilized to reconstruct 3D contact surfaces under occlu-122

sion during interaction.123

Recent methods have also been proposed that do not use tactile sensors, but instead estimate con-124

tact of unactuated deformable objects. Wi et al. [38, 39] use continuous implicit surface representa-125

tions to reconstruct the shape and contact points. Van der Merwe et al. [29] propose an implicit rep-126

resentation that uses unoccluded view of the scene and 6D wrench data to estimate the deforming127

geometry and contacts of a cube sponge mounted on a robot, while pressed against an object from128

the YCB Object Set [40]. A limitation of the prior implicit shape estimation approaches, however,129

is that sampling query points and reconstructing surfaces tend to take too long to be used in real-130

time [29]. In this work, we highlight that using explicit shape representation and learning with geo-131

metric structure with a GNN can enable real-time high-fidelity shape and contact estimation.132
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Figure 1: Overview of MOE-Touch, which estimates contact conditions of soft robotic manip-
ulators from deformation. (i) We capture RGB-D images from the wrist camera during the inter-
action. (ii) We then extract keypoints on each finger of MOE. (iii) Using the initial mesh of MOE
and extracted keypoints, we fit a mesh to the deforming state of MOE by ARAP principles. (iv) We
reconstruct MOE’s deforming shape surface geometry. (v) We train a GNN for contact estimation
over the MOE surface mesh, using a large simulated dataset of MOE deformations and correspond-
ing contact condition. (vi) From the reconstructed shapes, the GNN contact estimation model infers
distributed, binary contact points for each MOE finger over the interaction.

3 Problem Statement133

In this work, we aim to estimate the deformed shape of a continuum soft robotic manipulator and its134

contact regions based on the estimated deformation. To this end, we can make assumptions that are135

afforded to us because of the unique features of fully soft robotic manipulators. We assume that the136

material property is largely homogeneous and known. We also assume that the soft robot’s material137

is soft enough to deform with contact, which we validated to be true in contact experiments.138

The goal of the soft robot shape estimation in this work is to infer the overall mesh of the manipulator139

based on the sparse keypoint movements. We consider a soft robotic manipulator embodiment where140

the keypoints are tracked with visual markers attached to the soft fingers, although as with Yoo141

et al. [20], the keypoint movements could be indirectly tracked without external sensors or physical142

markers with a variety of sensors such as microphones. As such, the methods in this paper are143

relevant assuming the soft robot’s sensors can lead to sufficiently reliable estimation of keypoints.144

In this work, we seek to use an optimization-based approach to infer deformation of a multi-finger145

soft robotic manipulator interacting with the environment. Based on these high-fidelity soft robot146

mesh shape reconstructions, we aim to use soft-body simulation to learn a model that infers contact147

points on the mesh.148

4 Method149

In this section, we describe the design of our soft robot manipulator MOE (Section 4.1). We then150

describe the components of MOE-Touch (Fig 1): proprioceptive sensing for MOE that reconstructs151

its deforming surface geometry (Section 4.2); contact estimation based on observed deformations152

in MOE (Section 4.3); and reconstruction of contacting surfaces using predicted contact conditions153

over an interaction trajectory (Section 6.1).154
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4.1 MOE Design155

We design a soft tendon-driven manipulator which we call Multi-finger Omnidirectional End-156

effector (MOE), building on a single-finger tendon-driven soft robot [20]. The design is largely157

modular, where each of the fingers is an independent subsystem that can be detached and assembled158

to get multiple-finger configurations. In this work, we present results for a MOE with two fingers,159

as shown in Figure 2, and three fingers for the paper grasping task. Each of MOE’s soft fingers is160

molded from silicone with low hardness. Each finger has four embedded tendons, which are actu-161

ated by two servo motors. Each pair of tendons actuated by a single servo motor controls MOE fin-162

ger’s range of motion in a bending plane. We include an RGB-D camera on the wrist of MOE to163

provide egocentric-view depth, as shown in Figure 1. Red markers are placed on the surfaces of the164

MOE fingers for the RGB-D camera to track MOE keypoints as the body deforms.165

4.2 Multi-Shape Estimation166

Servo Motors

Pulleys

Silicone Fingers

Servo 1

Servo 2

Tendons for Servo 1
Tendons for Servo 2

Wrist RGB-D 
Camera

Figure 2: Design of MOE.

To guide the shape estimation of MOE, we track the 7 red167

keypoint markers placed on the surface of each MOE fin-168

ger, as shown in Figure 1. We segment the markers using169

color thresholds and apply DBSCAN [41] to cluster the 3D170

points, localizing marker centers based on the point den-171

sities. In the initial frame, we find the nodes on the ini-172

tial mesh closest to the keypoints and use them as handle173

points. From the initialization phase, we account for the174

movement of each of the keypoints frame-to-frame.175

We consider the surface mesh Sn = (En, Vn) , represent-176

ing the nth individual finger of MOE and the deformed177

MOE finger mesh S′
n, where a surface mesh is defined by edges ei,j ∈ E composed from vertices178

i, j ∈ V . As previously proposed [42, 20], we include a penalty on the rotations of the neighboring179

edges el ∈ N(ek) to produce mesh updates that are physically admissible. The energy to minimize is180

Esmoothed({Sn, S
′
n}) =

N∑
n=1

min
Rn,1,...,Rn,m

m∑
k=1

 ∑
i,j∈ek

cijk∥enij −Rn,ke
n′

ij ∥2

+ λÂ
∑

el∈N(ek)

wkl∥Rn,k −Rn,l∥2
 ,

(1)

where cijk are the cotan weights [43], λ is the regularization weight, R1, ..., Rm ∈ SO(3) are the181

local rotations for each of the edges ek ∈ E where m = |E|, Â is the triangle area and wkl are182

the scalar weight terms defined by the cotan weights of the dual mesh of ekl [43]. We iteratively183

minimize Esmoothed({Sn, S
′
n}) with local-global optimizer as outlined in Levi and Gotsman [42].184

To reconstruct the full mesh shape of MOE, we treat vertices corresponding to the keypoints p1,...,k185

as being constrained to the new positions, based on the predicted keypoint positions. The rest of186

the mesh vertex positions are moved to minimize Esmoothed. Note that we jointly optimize the187

surface meshes of the fingers together for multi-shape estimation of the deformed state of the MOE188

manipulator.189

We visually track keypoints observed by a wrist-mounted RGB-D camera, which simplifies track-190

ing for multiple fingers without the need to embed sensors in each finger as in [20] where one finger191

needs 6 microphones. Our formulation for multi-shape estimation can be applied as long as key-192

point positions can be observed (e.g., through modalities beyond vision) and the correspondence193

to the mesh vertices is known. Unlike previous contexts in which ARAP has been applied for soft194

bodies, we study deformations caused by interactions with the environment. To account for occlu-195

sion, which can occur during interaction, we remove the keypoints from consideration that are not196

observed. Based on our formulation, the vertex associated with the keypoint will be updated based197
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on the observable keypoints. By approaching multi-shape estimation with this energy-optimization198

approach, we ground the predicted shapes on the undeformed finger mesh Sn to mitigate drift from199

accumulating errors or outlier shape estimation errors.200

4.3 Contact Estimation201

For MOE-Touch, we aim to use shape estimation of MOE’s deforming state to infer its contact con-202

ditions. Graph neural network (GNN) architectures have been shown to learn and reason about com-203

plex physical interactions and spatial relationships [44, 45]. We present and train a GNN-based con-204

tact estimation model on the simulated dataset, where the inputs are MOE point clouds labeled with205

contact obtained from the simulation environment. We deploy the trained contact estimation model206

directly on real-world predictions of MOE mesh shapes to predict the contacting nodes as MOE de-207

forms during an interaction trajectory, as visualized in Figure 1. By using observed deformation as208

a signal to predict contact conditions, we assume that the observed deformation is sufficiently ex-209

pressive in disambiguating contact conditions. This may depend on the representation of the shape,210

the deformation behavior of the material, and the contact configuration representation.211

212

4.3.1 Simulation Environment213

Contact points are difficult to obtain directly from the real world due to occlusions from the contact-214

ing object. Previous works have demonstrated the capabilities of soft-body simulation to generate215

training datasets of deformed shapes and contact information [46, 13].216

We model our soft-robot mamnipulator using the soft body simulator in SOFA [47] with its tools for217

solving Finite Element Method (FEM) problems. We follow previously recorded material properties218

for the silicone body of MOE, with Poisson’s Ratio of 0.1 and Young’s modulus of 100 kPa. For219

the integrator, we use the Rayleigh stiffness value of 0.1 and Rayleigh Mass of 0.1. We implement220

cable tensions for the tendons with displacement action input. The resulting simulator scenes are221

visualized in the appendix.222

To sample from varying contact normals and surface orientations, we import objects from the YCB223

Object and Model Set [40] into a SOFA simulation environment. We also generate and import224

tendon-actuated meshes of MOE. We randomize the selected contacting object’s orientation and225

position with respect to MOE’s trajectory, to simulate various contact locations and orientations.226

We also apply different actuation forces to MOE’s fingers, and the actuated manipulator towards227

the contacting object to observe further deformations. From these simulated trials, we generate a228

dataset of 174,590 meshes and corresponding contact points, which were recorded as the indices of229

the MOE mesh vertices in contact with an object.230

231

4.3.2 Contact Estimation Model232

For i ∈ V ′, where V ′ is the set of vertices from the multi-body shape estimation in Section 4.2,233

we seek to predict its binary contact label. Adaptive graph construction allows the model to better234

capture the underlying structure of the point cloud as the features evolve through the network layers235

for estimating contact on MOE, especially compared to baseline approaches that do not encode236

geometric relationships as shown in the evaluation. Each layer applies an edge convolution operation237

introduced by Dynamic Graph CNN (DGCNN) [44], which updates the feature representation hi of238

the point, by aggregating information from its neighboring points in the graphs constructed by k-239

nearest neighbors in the feature space. For a point i ∈ V ′ and its neighbor j ∈ N (i) in the learned240

feature space hi, the edge convolution operation is defined as:241

hl+1
i =

∑
j∈N (i)

ReLU(Θ · (hl
i − hl

j) +Φ · hl
i),
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1  0.050229549407958984 seconds 4.04 mm
10 0.08914470672607422 seconds 2.01 mm

25 0.14969396591186523 seconds -  0.82 
mm

50 0.2413938045501709 seconds 0.57 mm

Ground-truth ShapeIteration 1
50.23 ms
4.04 mm

Iteration 10
89.14 ms
2.01 mm

Iteration 25
149.69 ms
0.82 mm

Iteration 50
241.39 ms
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Key 
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Artifact

Total Runtime
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Contact Estimation
51.22 ms
0.71 mm

Estimated Contact Points
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Figure 3: Scaling MOE-Touch to More Complex Manipulators. We demonstrate that MOE-
Touch scales up from two fingers to a five-finger variant of MOE.

where hl
i is the feature of point i at layer l, and Θ and Φ are learnable parameters. The network242

consists of three edge convolution layers, each followed by a max-pooling operation that aggregates243

features globally across all points, effectively capturing both local and global context to allow the244

model to reason about the deformation at multiple scales. The features extracted from all layers are245

concatenated to form a global feature vector, which is then processed by fully connected layers to246

predict MOE contact conditions. The model was trained on MOE point clouds sampled to 2048247

points. To account for the imbalance in the dataset, where there are noticeably more points not in248

contact than the ones in contact, we use a weighted softmax cross entropy loss function. The training249

details are provided in the appendix.250

5 Evaluation251

5.1 Baselines252

We evaluate the proposed MOE-Touch multi-shape and contact estimation against state-of-the-art253

baseline approaches with two metrics: Chamfer distance (CD) and runtime per observation. We first254

compare against a k-nearest neighbors (KNN) baseline, where we select the training example with255

the closest keypoint positions compared to the observed keypoint positions. We use the keypoints256

as input for KNN to reduce search complexity and make the method computationally tractable. We257

show results for both KNN[Sub.] where a random sampling of 10% of the training data is used258

to reduce runtime per observation and for KNN[All], where the entire training data is provided for259

prediction.260

We also evaluate against Neural Deformation and Contact Field (NDCF) [29], which was presented261

as a method to jointly predict deformation and contact conditions. In the original work [29], NDCF262

uses unobstructed side-view point cloud observations of the soft end-effector and wrist wrench mea-263

surements as inputs to the model. As we do not have access to the wrench measurements in this264

work, we only provide an unobstructed side-view point cloud of MOE to the NDCF pipeline and265

pre-train on MOE’s undeformed finger shape after normalizing and centering the mesh. Also com-266

pared to the original work, the testing scenarios for MOE-Touch are different. Notably, NDCF was267

only tested on a symmetric sponge (46 mm x 46 mm x 46 mm) that only undergoes surface-level lo-268

cal deformation and indentations. MOE undergoes global shape deformation through bending. To269

account for the domain differences, we also included results for the sponge interactions with YCB270

objects, which should provide the most optimistic results for NDCF.271

Implicit surface representations generally suffer from longer runtimes due to the need to query and272

sample points densely. As an additional baseline, we provide results for MOE-NDCF, which uses273

MOE-Touch’s mesh shape estimation module and queries contact points using NDCF’s contact es-274

timation model. For all of the methods, we evaluated on 10% of the dataset sampled from unseen275

contact trajectories.276277
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Performance Metrics

Model Input Soft
Manipulator

BCD
(mm ↓)

Runtime
(ms ↓)

Sh
ap

e KNN [Sub.] KP MOE 1.719 ± 1.924 37.61 ± 2.154
KNN [Full] KP MOE 0.978 ± 0.276 250.4 ± 8.741
NDCF [29] PC Sponge 0.974 ± 0.305 2546 ± 473.4
NDCF [29] PC MOE 3.455 ± 4.069 2139 ± 172.1
MOE-NDCF KP + PC MOE - -
MOE-Touch KP MOE 0.617 ± 0.047 47.89 ± 2.980

C
on

ta
ct

KNN [Sub.] KP MOE 8.318 ± 6.173 37.61* ± 2.154
KNN [All] KP MOE 3.079 ± 3.042 250.4* ± 8.741
NDCF [29] PC Sponge 4.891 ± 3.174 2546 *± 473.4
NDCF [29] PC MOE 19.31 ± 8.347 2139 *± 172.1
MOE-NDCF KP + PC MOE 9.189 ± 5.394 112.3*± 19.31*
MOE-Touch KP MOE 2.740± 2.827 86.97 *± 4.111

Table 1: Evaluation of Shape and Contact Estimation with Ground Truth from Simulation Environ-
ments with YCB objects. Runtime is evaluated on the same environment with the same comput-
ing hardware. Some methods use unobstructed partial point clouds (PC) from the side view as in-
put [29] while others use mesh keypoint (KP) positions. * Runtime for contact estimation includes
processing time for the shape estimation, which all of the methods require before or during contact
estimation. ↓ indicates that lower is better.
5.2 Simulation Study278

Simulation environments readily provide unoccluded ground-truth contact conditions, allowing us279

to use bidirectional Chamfer distance (BCD) as the metric for both shape and contact estimations of280

the methods. We can also obtain segmented point clouds of MOE, which the NDCF-based baselines281

require. As noted, contact estimation generally relies on accurate shape estimation since the contact282

points are registered onto the deforming body surface. As shown in Table 1, MOE-Touch produces283

lower shape estimation error with an average BCD of 0.617 mm across the test dataset. Additionally,284

the runtime of MOE-Touch’s shape estimation module is faster than any of the baselines except285

KNN[Sub.].286

For contact estimation, the proposed MOE-Touch contact estimation module outperformed all of287

the baseline methods on BCD with 2.740 mm. The total runtime of MOE-Touch was faster than288

the NDCF and KNN[All] baselines. KNN[Sub.] had the fastest total runtime but with degraded289

performance compared to the KNN[All].290

We also demonstrate in the simulated environment that the proposed MOE-Touch pipeline performs291

well even with increased system complexity by testing a five-finger variant of the proposed MOE292

end-effector as shown in Figure 4. We note that the shape estimation module converges by iteration293

50 with BCD of 0.57 mm for all of the five MOE fingers. We then note that the contact estimation294

step also scales well with an inference time of 51.22 ms.295

5.3 Real-world Evaluation296

We demonstrate that MOE-Touch can estimate contact conditions accurately in varying contacting297

conditions with controlled contact on a thin plate (see Figure 5). Table 2 (top rows) reports the298

quantitative contact estimation results with comparisons to the baseline. By using a known simple299

geometry such as a thin plate, we can evaluate the contact estimation performance on specific surface300

regions of MOE. We evaluate contact estimation performances for contact at the tip, in the middle,301

and close to the base of the robot for contact from the front and contact from the side. For each302

combination of contact conditions, we run 3 trials, resulting in 6 trials for each contact region.303

We note that the contact estimation is accurate with <10 mm unidirectional Chamfer Distance (CD)304

with notably higher error at the base. The performance is likely worse near the base of the MOE305
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Figure 4: Visualization of Sampled Shape and Contact Estimation Results compared to Base-
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Figure 5: Controlled thin plate contact estimation ex-
periment to demonstrate that MOE-Touch is sensitive
in a large portion of the MOE soft robot.

Method Contact
Object

UCD
(mm ↓)

KNN [Full] Plate (Tip) 3.41± 0.318
MOE-Touch Plate (Tip) 3.03 ± 0.475
KNN [Full] Plate (Middle) 13.5 ± 1.87
MOE-Touch Plate (Middle) 7.08± 0.512
KNN [Full] Plate (Base) 20.1± 1.89
MOE-Touch Plate (Base) 9.92 ± 1.28

KNN [Full] Head (Bald) 7.76± 1.06
MOE-Touch Head (Bald) 6.58± 0.827

KNN [Full] Head (Wig) 13.7 ± 2.11
MOE-Touch Head (Wig) 12.2 ± 1.37

KNN [Full] Arm (Gown) 6.88 ± 0.581
MOE-Touch Arm (Gown) 6.24 ± 0.419

Table 2: Quantitative comparisons of
MOE-Touch to a KNN-based sparse
contact estimation baseline [48], both
for a controlled experiment setting and
task-relevant settings.

because the robot is less compliant and deforms less, making it more difficult for the model to306

disambiguate possible contact conditions. In all contact conditions, MOE-Touch performs better307

than the baseline, most notably at the base with 50.65 % reduction in CD error.308

We also test the contact estimation module on accurate models of the head and arm. Both envi-309

ronments are motivated by common contact-rich assistive robotic settings, where visual occlusion310

may be common and unavoidable, requiring the robot to safely interact with the human subject.311

For the head setup, we randomly selected a head mesh of an adult person from a craniofacial shape312

dataset [49], 3D-print the meshed model, and test with and without a voluminous wig.313

We then test 30 distinct MOE contact conditions on the head to evaluate shape and contact estima-314

tion modules with and without a wig. We register the point clouds together from the wrist-mounted315

RGB-D camera to show the contact coverage across the head in Figure 6. We then evaluate the shape316

and contact estimation modules by registering the predicted contact points together, computing uni-317

directional average CD from the contact points to the head ground-truth mesh nodes. We then per-318

form a similar series of 15 contact trials on a model of an adult human arm occluded by a hospi-319
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Figure 6: Surface reconstruction with MOE-
Touch

Method Contact
Object

Uni. CD
(mm ↓)

Non-Probabilistic Head (Bald) 16.01
GP w/ Sphere Head (Bald) 13.83
GP w/ Prior Head (Bald) 3.64
Non-Probabilistic Head (Wig) 16.05
GP w/ Sphere Head (Wig) 14.41
GP w/ Prior Head (Wig) 3.62
GP w/ Prior Arm 9.90 (4.82*)

Table 3: Contacting surface reconstruc-
tion results compared to the ground
truth. * denotes the result for the arm
with the unsampled hand removed from
evaluation.

tal gown (see Figure 6). Similar to the trials with the model head, we register the predicted contact320

points, compared to the ground-truth mesh, and compute the CD metrics.321

We observe that in all three settings, the MOE-Touch pipeline performs functionally well and im-322

proves on the baseline method in all three cases with the lowest errors. The environments with the323

bald head and arm both result in an average MOE-Touch CD error of around 6.5 mm. We can notice324

a noticeably higher CD error of 12.22 mm in the environment with a head and a wig. A significant325

portion of the error may come from the thickness that the wig’s inner hair net which is around 5mm326

thick. Because we do not have a separate ground-truth mesh for the head with a wig, we still evalu-327

ate the metrics with the bald head mesh.328

On a consumer workstation with an RTX 4090 GPU, the MOE-Touch shape estimation module out-329

puts a mesh with 2048 vertices from 50 iterations with a runtime of 49.55 ms, and the contact estima-330

tion inference time runs on average 43.62 ms for each deformed shape. For comparison, a neural im-331

plicit surface-based approach takes 2079 ms per scene to reconstruct the mesh and contact patch [29].332

The efficiency of MOE-Touch is largely a result of the methods that we develop around our domain-333

specific assumptions for soft robotic perception, such as homogeneous material composition.334

335

6 Applications336

We demonstrate practical applications of our MOE-Touch approach for two real-world manipulation337

tasks that involve large distributed contact: contacting surface reconstruction (Section 6.1) and paper338

grasping (Section 6.2). In both tasks, the robotic manipulator must interact with the environment339

and make distributed contact. With contacting surface reconstruction, we demonstrate that MOE-340

Touch can be used to pat an occluded surface and reconstruct it. Then, with paper grasping, we341

demonstrate the advantages of MOE’s softness to guide its perception with MOE-Touch and to342

robustly manipulate objects that are difficult to grasp.343

6.1 Contacting Surface Reconstruction344

MOE-Touch’s shape estimation and contact estimation modules provide contact information. One345

useful application of a soft robotic manipulator is safely interacting with an occluded surface, such346

as the scalp under hair or arm under a hospital gown, and using the contact estimates to reconstruct347

them. In such tasks, we have useful priors on the occluded body part’s geometry. We use a task-348

dependent prior mesh specific to the domain. For the initial task of reconstructing a human head,349

we use an open-sourced canonical head 3D mesh [49] and trained a Gaussian Process (GP) to learn350

a prior over the SDF of the mesh. Given a set of dense grid points X and corresponding SDF values351
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Y, the GP model is352

f(x) ∼ GP
(
c, σ2 exp

(
−∥x− x′∥2

2l2

))
, (2)

where σ2 is the variance and l is the length scale of the Radial Basis Function (RBF) kernel, with353

the observation model354

y = f(x) + ϵ, ϵ ∼ N (0, σ2
n) (3)

where n is the number of training points. The training objective maximizes the marginal log-355

likelihood loss356

log p(Y|X) =− 1

2
Y⊤(K+ σ2

nI)
−1Y − 1

2
log |K+ σ2

nI| −
n

2
log 2π, (4)

where K denotes the covariance matrix constructed using an RBF kernel over the training inputs in357

X. Once we have a trained prior, we fine-tune the GP with the contact-point information to obtain358

the posterior SDF. Finally, we reconstructed the head mesh using Poisson Surface Reconstruction359

(PSR) [50] on a point cloud obtained by running the Marching Cubes Algorithm (MCA) [51] over360

the zero-level set of the SDF.361

For training, the GP takes grid points as input and generates a multivariate normal distribution (N )362

for the output. An SDF is sampled from N for each point in the dense grid and compared with the363

ground truth using an exact marginal log likelihood loss. The gradients of the loss value with respect364

to the kernel parameters are computed and updated with gradient descent. The pretrained GP takes365

grid points as input and outputs N . The output SDF is formed using only the mean of N .366

Results in Table 3 show that our method reconstructs the mesh from real-world contact points ac-367

curately with an average CD of 3.64 mm for the bald head, 3.62 mm for the head with a wig, and368

9.90 mm for an arm dressed in a hospital gown. The capability of the task-dependent prior method369

to generate a watertight mesh after accommodating real-world data is shown in Figure 6 for the arm370

and the head. For the evaluation of the arm, we reported errors for the entire arm and for the arm371

with the hand removed since we did not sample from it during experiments. The prior mesh used to372

pretrain the head GP has a CD of 5.46 mm with the 3D printed head mesh, and the prior mesh for373

the arm GP has a CD of 5.677 mm with the 3D printed arm mesh.374

We also present a baseline method based on some previous works that assume a primitive geometric375

shape as initialization for interactive perception and mesh reconstruction [35, 15]. We use a spherical376

prior as a naive method to obtain the posterior distribution over the real-world contact points. The377

main point of failure in this method can be attributed to the fitted sphere mesh, with points that are378

significantly out of distribution from an average human head.379

We also compare the GP-based implicit surface methods to using a non-probabilistic approach,380

where we use the subset of vertices on the prior mesh and deform them towards the nearest neighbor381

contact points. We then apply Laplacian smoothing to interpolate a smooth mesh between the con-382

tact points. The non-probabilistic method results in a qualitatively worse formed surface compared383

to the GP method with a spherical prior. This method performs the worst for surface reconstruction384

with average CD values of 16.01 mm for bald head data, and 16.05 mm for head with a wig. The385

proposed task-dependent prior-based surface reconstruction module performs better than the two386

baseline methods, resulting in 73.68 % and 77.26 % reduced average CD metric error for the head387

without a wig compared to using a spherical prior and the non-probabilistic method, respectively.388

6.2 Paper Grasping389

Incline
Angle

Success
w/o MOE-Touch

Success
w/ MOE-Touch

0 deg 5/5 5/5
30 deg 1/5 5/5
45 deg 0/5 4/5

Table 4: Paper Grasping Results.

Grasping a 2D deformable object such as a piece of fabric or390

paper from a flat surface is a difficult because it requires the391

robot to make large distributed contact with the object and fold392

the object into a grasp while maintaining contact. Previous393

works aim to address this challenging task by searching for a394

sufficiently wrinkled area on the object to pinch [52] or using395
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Figure 7: Application of MOE-Touch in flat deformable object grasping task on inclined sur-
faces.

a specialized mechanism such as suction gripper to pick up the396

flat object [53]. For a multi-finger manipulator to perform this task, each finger must be contacting397

the flat object and be aligned to fold the object into a secure grasp. To this end, we evaluate MOE-398

Touch on the task of grasping paper on a surface with an initially unknown incline angle. Addition-399

ally, to evaluate the modularity of MOE-Touch, we tested a variant of MOE with three fingers. We400

prepared an inclined clear acrylic flat surface with a 190×130 mm common printer paper on top.401

MOE made contact with the paper initially misaligned from the acrylic surface. We used MOE-402

Touch to estimate contact points with the surface and fitted a plane to the points with Random Sam-403

ple Consensus (RANSAC). We then reoriented MOE to be normal to the surface and grasped the404

paper (see Figure 7). We tested with 0, 30, and 45-degree incline of the surface. We compared the405

success rates of the paper grasping task out of 5 trials for each setting against not using MOE-Touch.406

Surprisingly, MOE could still grasp the paper at 30-degree incline once without MOE-Touch, show-407

ing robustness of its compliance and mechanical intelligence. However, with 45-degree inclines,408

MOE needed MOE-Touch to succeed in the task.409

7 Conclusion410

In this work, we introduce methods for contact estimation in contact-rich soft robotic manipulation.411

We develop MOE, a modular Multi-finger Omnidirectional End-effector that can safely and robustly412

interact with the world for contact-rich manipulation. We use a mesh energy optimization-based413

method to estimate the shape of MOE in interaction with the environment. The proposed MOE-414

Touch method takes an explicit mesh optimization-based approach to reconstruct the deformed shape415

of the soft robot and reason about contact conditions with a GNN over the mesh. We show that416

MOE-Touch can estimate occluded surface contact with an average distance error of 6.25 mm, im-417

proving on the baseline by 17.53%. We show that the MOE-Touch can be deployed to reconstruct418

an occluded surface with averaged errors of 3.62 mm. We then show the use case of MOE-Touch419

for a manipulation task of grasping paper on arbitrarily inclined surfaces, where contact estimation420

guides re-orientation of MOE to be normal to the contacting surface.421
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8 Limitations422

One limitation of this work is that we train the contact estimation module with binary contact la-423

bels. Extending MOE-Touch to estimate contact pressure may present advantages in downstream424

manipulation tasks that require more complex interactions. Just as human skins have four differ-425

ent mechanoreceptors responsible for different tactile stimuli [54], robotic tactile modalities offer426

different advantages and multi-tactile modality sensor fusion may be a promising direction to aug-427

ment MOE-Touch. Currently, our approach relies on visually tracking finger keypoint markers on428

the backs of the fingers using a wrist-mounted camera, which in some cases may be occluded in429

real-world deployment. A potential solution is to track a large number of keypoints so that failure430

is less likely. Additionally, embedding sensors within the fingers [9] or incorporating acoustic sens-431

ing [20] pose promising directions to overcome occlusion with other modalities to estimate mesh432

keypoint positions.433

434

Although the MOE-Touch grounds the multi-shape estimation on the undeformed meshes of the435

fingers to prevent drifting and accumulating errors, there is no mechanism implemented to ensure436

frame-to-frame prediction consistency in MOE-Touch, which may be important for long-horizon437

real-world deployment with noise. This limitation may be addressed using approaches such as438

Kalman filters [55] or by incorporating the history of previous observations. In this work, we also439

assume that the contacting object causes observable deformation in the soft robot and therefore440

must be more rigid than the material used to construct MOE’s fingers.441
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Figure 8: Experimental setup for evaluating the proposed MOE in interaction with a force-sensorized
mannequin head. A: Two-fingered MOE soft manipulator with an RGBD camera. B: Mannequin
head with a wig and 6-axis force sensor at its base.

A MOE Interaction Forces592

We hypothesized that soft robotic manipulators would be safer and more comfortable for the human593

subject in hair manipulation and close-contact tasks.594

Toward evaluating the hypothesis, we compared the forces experienced by the force-sensorized man-595

nequin head with open-loop experiments, where a rigid parallel jaw gripper (FE Gripper, Franka596

Robotics) and the proposed MOE moved to a specified depth (2.0 mm, 4.0 mm, 6.0 mm) into the597

hair to grasp. The depths are measured with respect to the position where the robot is barely mak-598

ing contact with the hair to account for different lengths of the end-effectors. As the robot followed599

specified trajectories, we measured forces at the mannequin head base. After the grippers grasped600

the hair, the robot hand moved up to lift the grasped bundle of hair. We then measured the minimum601

packing perimeter of the bundle of hair. Figure 9 shows a sample result and the experimental proce-602

dure. Figure 11 shows the forces and torques experienced by the force-sensorized mannequin head.603

Lower forces and torques experienced by the mannequin head could indicate reduced discomfort if604

applied to a human subject. Concurrently, a hair-care robot will need to be able to grasp hair that605

may be close to the scalp, which will likely result in higher forces experienced by the mannequin606

head. Then, we note that an ideal hair-care robot must be able to grasp hair effectively while also607

applying minimal force on the head. Table 5 reports the maximum force experienced by the head at608

varying depths and the amount of hair grasped.609

We note that at 6.0 mm depth, the rigid end-effector exerts 7.67 N of force on the mannequin head. At610

the same depth, MOE applied 1.98 N of force. This constitutes a 74.1 % reduction in the maximum611

force applied to the head. Meanwhile, on the grasped hair metric, MOE grasped approximately612

10 % less hair. A potential explanation of this marginal decrease in the amount of hair grasped is613
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Figure 9: Hair grasping evaluation task experimental procedure and sample result at 6.0 mm depth.
Top: experienced net forces and key frame images of the experiment with a baseline rigid gripper.
Bottom: experienced net forces and key frame images of the experiment with the proposed MOE.
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Figure 10: Contact estimation experiment results. The experimental setup for the head contact
estimation experiments where a 3D-printed head is mounted on a force-torque sensor. The net
force readings are plotted, showing the interaction forces experienced by the head. We visualize the
registered wrist-mounted RGB-D camera point clouds from the 30 contact conditions, as well as the
predicted MOE shape and contact points on the head. We show results for the head with and without
a wig.

that the compliance of MOE allowed some of the grasped hair to be pried away as the end-effector614

moved away. This is partially supported by the fact that as the rigid gripper moved away from the615

head, the mannequin head experienced large changes in the forces applied, indicating possible hair-616

19



Figure 11: Sample set of YCB and a single headspace meshes simulated in contact with MOE.
Relative poses were randomized to diversify the dataset.

End-effector Depth (mm) Performance Metrics
Max Force (N, ↓) Grasped Hair (mm, ↑)

2.0 1.11 4.0
Rigid 4.0 3.38 20.0

6.0 7.67 25.0

2.0 1.09 5.0
MOE 4.0 1.38 18.7

6.0 1.98 22.5

Table 5: Hair Grasping Evaluation.

pulling by the end-effector. This change in forces as the robot hand moves away is not as evident in617

experiments with MOE.618

B MOE Shape Estimation619

As-Rigid-As-Possible (ARAP) involves minimizing the energy function EARAP, which is defined620

as the following:621

EARAP(S, S
′) =

|E|∑
k=1

min
R∈SO(3)

∑
ei,j∈E

wi,j∥e′i,j −Rei,j∥.

We can then find the solution mesh that minimizes EARAP with an iterative local-global optimizer.622

Minimizing EARAP as is with sparse handle points on surface meshes can result in undesirable623

surface artifacts such as folds.624
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Figure 12: Shape reconstruction with 7 and 4 markers. For the 4 markers case, every other points
were removed

Minimizing the EARAP over a tetrahedral mesh can prevent these artifacts by implicitly applying625

soft volumetric constraints that prevent such artifacts from forming. However, operating over tetra-626

hedral meshes is more computationally expensive which is especially undesirable in the context of627

real-time robotic tools.628

Instead, a modification of ARAP to include a penalty on the rotations of the neighboring edges629

produces more intuitively physically admissible results. The new energy to minimize is formulated630

as631

Esmoothed(S, S
′) = min

R1,...,Rm

m∑
k=1

(
∑

i,j∈ek

cijk∥eij −Rkeij∥2

+λÂ
∑

el∈N(ek)

wkl∥Rk −Rl∥2).

We note that minimization of Esmoothed with λ = 0 results in the minimization of EARAP . We632

consider the vertices corresponding to the keypoints p1,...,|pk| are constrained to the new positions633

based on the predicted key-point positions, and the rest of the mesh vertex positions are moved to634

minimize Esmoothed.635

C Shape Estimation Evaluation636

Prior work has shown that the rigidity and rotation regularization of the ARAP formulation as pre-637

sented in Section 4.2 generally produces more physically admissible deformed soft bodies, com-638

pared to end-to-end learning-based methods [20]. A key difference in our implementation of the639

ARAP-based soft robot reconstruction is that the wrist-mounted RGB-D camera can only observe640

one side of MOE’s soft surface. The underlying assumption with such an implementation choice641

is that the observation of one side of MOE can directly inform us about the changes to the state of642

the other side. As a consequence, we also assume that the cross-section of MOE’s fingers remains643

largely the same, to allow us to infer the opposing surface’s transformation. This assumption is sup-644

ported by previous works in mechanics-based modeling and validation of tendon-driven soft robotic645

manipulators [24].646

We validate shape fidelity and consistency on the side of MOE that is normally occluded from the647

wrist-mounted RGB-D camera, as shown in Figure 12. We place a high-resolution RGB-D camera648

(Zivid, One Plus) in a third-person view facing MOE, from either its side or back, to capture the649

side that is normally unobserved in our pipeline. We also place a clear acrylic sheet facing the third-650

person view RGB-D camera. This setup allows us to deform MOE against the clear sheet with a651
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Performance Metrics

Contact Condition # of Keypoints Mean Uni. CD (mm, ↓) Max Uni. CD (mm, ↓)

Side 7 1.16 3.19
Side 4 1.23 3.47

Back 7 1.17 3.18
Back 4 1.19 3.35

Table 6: MOE Shape Estimation Evaluation.

large contact surface, while remaining fully observable to the third-person view RGB-D camera. We652

present the average and maximum unidirectional Chamfer Distance (CD) results from third-person653

RGB-D point cloud to the complete estimated shape, for both side and back contact conditions, in654

Table 6. We can observe that the shape estimation average CD error is small at 1.16-1.17 mm for the655

two contact conditions. Notably, the error is smaller than the 4.89 mm best average CD error reported656

in [20]. Such results highlight a potential advantage of directly observing keypoint movements with657

wrist-mounted cameras compared to indirectly inferring keypoint movements.658

We also experiment with testing the robustness of the MOE shape estimation module by remov-659

ing markers from being considered during ARAP mesh optimization. With 4 markers, we note a660

marginal increase in both average and maximum CD errors from when the shape estimation mod-661

ule considered the full set of 7 markers for each finger. The relatively small change in performance662

highlights the robustness of the shape estimation module, which can be partially attributed to the663

well-tuned smoothing penalty to produce meshes that conform well to soft body mechanics.664

665

D GNN Training Details666

We trained the GNN-based contact estimation model to label the vertices in the deformed mesh667

i ∈ V ′ with the weighted cross-entropy loss:668

L = −
∑N

i=1 [wC · yi · log(pi) + ·(1− yi) · log(1− pi)]669

where yi denotes the label for the vertex i and pi is the output probability and wC denotes the weight670

for the contact points. We trained with the following parameters:671

• Learning Rate: 0.001672

• Batch Size: 32673

• Number of Neighbors (k): 30674

• Epochs: 400675

• Weight Decay: 1e-4676

• Momentum: 0.3677

• Learning Rate Decay:678

– Rate: 0.5679

– Decay Step: 20 epochs680

• Dropout Rate: 0.5681

We implemented edge convolution MLP layers have the following hidden layers: [64, 64], [64,682

128], [128, 256]. After the edge convolution layers, the concatenated features are processed by fully683

connected MLP [512, 256].684
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Figure 13: Sample of the simulated scenes for generating the training data for MOE contact estima-
tion.

E Surface Reconstruction685

We use GPyTorch to train ExactGPs with Radial Basis Function (RBF) Kernels on a single GPU with686

a sparse grid to fit within the memory of a single RTX 4090. We have shown effective extrapolation687

capabilities of GPs by generating SDFs at twice the density during inference using CPU.688

The task-dependent GP-based surface reconstruction pipeline follows the following steps:689

1. Pretrain a GP on a prior mesh that is dependent on the task to be done. The objective of690

the GP is to take a grid of points (50 × 50 × 50) and compute the SDF with respect to the691

surface of the mesh. Since the GP is trained for 5000 epochs, this one-time process is slow692

and takes about 30 mins on a single GPU. Due to sparse discretization, the reconstructed693

prior is not watertight and results in holes in the mesh.694

2. Next, given a set of real-world contact points, fine-tune the GP on the new points. This695

process is much faster and takes about 100 epochs to train.696

3. Finally, we create a dense grid and query the GP to obtain the SDF values of individual697

points. Then we implement a Marching Cubes Algorithm to find the zero-level set of the698

SDF. To reconstruct the final mesh, we use Poisson Surface Reconstruction from Open3D699

and show the posterior reconstruction as wireframes overlayed on top of the prior recon-700

struction in Figure 10 of the paper.701

However, grid formulation (1) is limiting for surfaces that are not uniformly distributed. This is cru-702

cial because reconstructing the head is relatively easy due to the approximately 1:1:1 aspect ratio.703
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Since the hand reconstruction grid is non-uniform with a 2:20:1 aspect ratio, a uniformly distributed704

grid (50 × 50 × 50) can not be directly used. To address this issue, we sample an extremely dense705

grid of shape (200× 200× 200), and randomly sample 30, 000 points and follow the same pipeline706

as above. This significantly improves reconstructions and enables us to leverage the expressivity707

of Gaussian Processes on non-linear surfaces with higher fidelity, compared to uniformly generated708

dense grids. We obtained the prior mesh of the arm with a language-conditioned mesh generator709

(GENIE, Luma Labs) while the prior head shape was obtained from randomly sampling the cranio-710

facial shape dataset.711

E.0.1 No Prior712

A naive approach for surface reconstruction is a non-probabilistic method by fitting a sphere to the713

contact points collected in the simulation. Given a set of points {Pi}Ni=1, where Pi is the ith point714

in 3D space, the objective function for fitting a sphere to the points is defined as715

f(c, r) =

N∑
i=1

√√√√ 3∑
j=1

(Pij − cj)2 − r

2

, (5)

where c ∈ R3 represents the center of the sphere, and r is the estimated sphere’s radius. The initial716

guess for the optimization is717

c0 =
1

N

N∑
i=1

Pi, (6)

r0 =
1

N

N∑
i=1

√√√√ 3∑
j=1

(Pij − c0j)2. (7)

We solve the optimization problem minc,r f(c, r) using L-BFGS [56] to find the c and r that mini-718

mize f(c, r).719

We sample a point cloud for the sphere and implement a k-d tree-based nearest neighbor search to720

average the residuals between the contact points and the spherical mesh. Finally, we smooth out the721

abrupt changes to the mesh using a smoothing Laplacian filter.722

E.0.2 Spherical Prior723

Gaussian Processes have been extensively studied for implicit surface reconstruction in the literature724

[14, 15, 35]. We implement a modified version of GPIS that runs on GPU, to represent the signed725

distance functions (SDFs) of the head without needing surface normals. Generally, active explo-726

ration algorithms assume an initial condition of uniformly distributed points in a grid. Every mea-727

surement reduces the uncertainty until the final shape of the object is represented by the GP mean.728

We fit a spherical mesh to the these points, and use this sphere as a prior to train the GP over a dense729

3D array of grid points encompassing the mesh. The SDF values for each point Pi are computed as730

SDF (Pi) = r − ∥Pi − c∥. (8)

Given a set of dense grid points X and corresponding SDF values Y, the GP model is defined as731

f(x) ∼ GP
(
c, σ2 exp

(
−∥x− x′∥2

2l2

))
, (9)

where σ2 is the variance l is the length scale of the Radial Basis Function (RBF) kernel, with the732

observation model733

y = f(x) + ϵ, ϵ ∼ N (0, σ2
n) (10)
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where n is the number of training points. The training objective is to maximize the marginal log-734

likelihood loss735

log p(Y|X) =− 1

2
Y⊤(K+ σ2

nI)
−1Y

− 1

2
log |K+ σ2

nI| −
n

2
log 2π,

(11)

where K denotes the covariance matrix constructed using an RBF kernel over the training inputs in736

X. Once we have a spherical prior, the GP is updated with the contact point information to obtain737

the posterior SDF. Finally, the head mesh is reconstructed using Poisson Surface Reconstruction738

(PSR) on a point cloud obtained by running the Marching Cubes Algorithm (MCA) over the zero-739

level set of the SDF.740
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