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Abstract: Underactuated soft robot hands offer inherent safety and adaptabil-
ity advantages over rigid systems. While imitation learning shows promise for
acquiring complex dexterous manipulation skills, adapting existing methods to
soft robots presents unique challenges in state representation and data collection.
We propose KineSoft, a framework for direct kinesthetic teaching of soft robotic
hands that leverages their natural compliance as a skill teaching advantage rather
than only as a control challenge. With KineSoft, human demonstrators physi-
cally guide the robot while the system learns to associate proprioceptive patterns
with successful manipulation strategies. KineSoft makes three key contributions:
(1) a shape-based imitation learning framework that uses proprioceptive feedback
to ground diffusion-based policies (2) a low-level shape-conditioned controller
that enables precise tracking of desired shape trajectories, (3) a sim-to-real learn-
ing approach to soft robot mesh shape sensing with an internal strain-sensing ar-
ray. In physical experiments, we demonstrate the superiority of KineSoft over
the strain-based policy baseline in six in-hand manipulation tasks involving both
rigid and deformable objects. KineSoft’s results suggest that embracing the in-
herent properties of soft robots leads to intuitive and robust dexterous manip-
ulation capabilities. Videos and code will be available upon final decision at
kinesoft-policy.github.io.
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Figure 1: KineSoft is a framework for learning from kinesthetic demonstration, enabling free-
shaped soft end-effectors to perform dexterous manipulation. Three key components are: 1) a
proprioceptive model for high-fidelity shape estimation, 2) diffusion-based imitation learning for
predicting the changes in shape and end-effector poses, and 3) a shape-conditioned controller that
allows the soft hand to track given shape trajectories.

1 Introduction

Underactuated soft robot hands offer key advantages over rigid counterparts, including inher-
ent safety through material compliance [1, 2] and robust adaptability to uncertain object geome-
tries [3, 4, 5]. These properties make them well-suited for applications requiring contact-rich and
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reliable interactions such as assistive care, delicate object manipulation, fruit picking, and collabo-
rative manufacturing [1, 6]. However, imparting dexterous in-hand manipulation skills to soft hands
remains challenging. Existing methods for soft robot manipulation often rely on hand-crafted prim-
itives [3, 5, 7, 8] that necessitate expert operators and limit system adaptability.

Recent advances in imitation learning, particularly frameworks like diffusion policy, have shown
promise in teaching complex manipulation skills [9, 10, 11]. These approaches have been suc-
cessfully applied to various tasks, from long-horizon mobile manipulation with rigid grippers [12]
to deformable object manipulation with simple end-effectors [13]. Unlike reinforcement learning
methods that depend on carefully crafted reward functions and simulation environments [14, 15],
imitation learning requires only demonstration trajectories of successful task execution. However,
collecting such demonstrations for soft robots presents challenges: demonstration collection meth-
ods for rigid articulated robots generally do not apply to underactuated soft robots and their virtually
infinite degrees of freedom. Teleoperation interfaces [16] designed for rigid anthropomorphic hands
fail to capture the unique capabilities and constraints of underactuated soft end-effectors. Soft robots
often lack a direct mapping to rigid human hand joints. Additionally, standard robot state representa-
tions for rigid robots in imitation learning frameworks [17], such as rigid transformation poses, are
ill-suited to provide meaningful state information for continuously deforming structures. Despite
recent advances in expressive state representation learning for soft robots [18, 19, 20], these have
not yet been applied to skill learning frameworks for in-hand manipulation. These limitations have
restricted the application of imitation learning to soft robotic manipulation.

We propose KineSoft, a hierarchical framework to enable direct kinesthetic teaching of soft robot
hands skills. The key insight is that soft robots’ natural compliance provides an advantage for teach-
ing rather than just a control challenge. Unlike rigid robots, whose joints and linkages often resist
human guidance due to strict kinematic constraints, soft hands can be easily deformed by a human
demonstrator into desired poses. This allows demonstrations to be collected by physically manipu-
lating the hand without violating mechanical limits or producing infeasible configurations. KineSoft
has three key components (Figure 1). (1) The proprioceptive system achieves state-of-the-art shape
estimation using internal strain-sensing arrays and a model trained on large simulated data of the
robot’s high-dimensional configurations. These sensors provide rich proprioceptive feedback while
preserving the hand’s natural compliance, allowing KineSoft to capture detailed information about
the hand’s deformation state during manipulation tasks in real time. (2) We train an imitation pol-
icy on these shape trajectories and use it to generate deformation trajectories during rollout. (3)
KineSoft’s low-level shape-conditioned controller then tracks these desired shapes. Experiments
demonstrate that KineSoft achieves accurate shape state estimation, mesh-based trajectory track-
ing through the shape-conditioned controller, and high performance in learned manipulation skills
through these shape-based representations.

In summary, this paper contributes: i) KineSoft, a framework for learning from kinesthetic demon-
strations for soft robot hands that enables dexterous in-hand manipulation, ii) a state-of-the-art pro-
prioceptive shape estimation approach using strain sensing integrated with soft robot hands that
enables precise tracking of finger deformations during contact-rich tasks, iii) shape-conditioned
controller for tracking the generated deformation trajectories and performing dexterous manipu-
lation tasks, and iv) simulated dataset and trained model for state estimation and control, which we
demonstrate can be readily deployed to open-source soft robot hands, such as the MOE platform [1].

2 Related Work

Learning for in-hand dexterity. Recent advances in reinforcement learning have driven signif-
icant progress in rigid robot in-hand dexterity [15, 14, 5, 21]. However, these approaches face
challenges in real-world deployment due to difficulty in creating resettable training environments.
To mitigate these issues, many methods transfer policies trained in simulation to the real world,
which has shown success with rigid robots with fine tuning in the real world [14, 15] but remains
less applicable for soft robots due to the complexities involved in modeling deformable materials,
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forward kinematics, and contact dynamics [22]. Despite recent interest in leveraging reinforcement
learning for soft robot arm control and trajectory tracking [23, 24, 25], difficulty in modeling simul-
taneous contact and soft robot body deformation dynamics have hindered their application to soft
robot dexterous manipulation.

Imitation learning has emerged as a promising alternative for reducing the reliance on explicit
physics simulation environments, enabling robots to acquire manipulation skills efficiently with
real-world data [26, 9, 17]. In-hand manipulation skills through imitation learning are typically
achievable with anthropomorphic hands that provide a direct mapping between human hand and
robot poses [27, 28, 29]. However, despite the inherent benefits in safety and dexterity through com-
pliance of soft robot hands, they face unique challenges due to the absence of reliable proprioceptive
feedback [30] and thus there is a lack of practical frameworks for collecting demonstrations for soft
robots. To the best of our knowledge, KineSoft is the first framework that effectively leverages pas-
sive compliance of soft robots to collect demonstrations and enables soft robots to acquire dexterous
in-hand manipulation skills.

Soft robot dexterity. Soft robot hands excel in grasping and manipulation tasks due to their mate-
rial compliance, allowing for passive adaptation to diverse object geometries [31, 32]. This compli-
ance facilitates robust grasping and safe interactions with humans and delicate objects by distributing
contact forces [7, 33, 1]. Recent advances in soft robots have aimed to improve dexterity through
innovative actuator designs, material improvements, and bioinspired morphologies [34, 6]. Despite
these strides, controlling soft hands remains a significant challenge due to their complex dynamics
and the high dimensionality of their state spaces [35]. Consequently, learning-based approaches for
soft robot dexterity have primarily focused on grasping [36], while the development of dexterous
in-hand manipulation skills has been hindered by the lack of available demonstration methods and
reliable proprioceptive feedback [30]. The unique advantages of soft robot hands in robust in-hand
manipulation stem from their lack of rigid skeletal structures [37]. However, this absence also in-
troduces challenges, as soft robot kinematics differ significantly from human hand motions. The
KineSoft framework bridges these gaps by integrating novel and accurate shape estimation methods
with learned imitation policies, enabling efficient skill acquisition for dexterous manipulation with
soft robots.

Soft robot state representation. Proprioceptive shape sensing is critical for enabling robust con-
trol in soft robots, particularly for accurate shape tracking and feedback-driven control [38, 39]. Ex-
isting works often use low degree-of-freedom shape representations such as constant curvature mod-
els [40, 41] or bending angles [42], which fail to capture the full richness of soft robot deformation
states. Toward capturing these complex deformation behaviors of soft robot manipulators, recent
approaches based on mechanics models have employed Cosserat rod models and high-dimensional
Frenet-Serret frames, associated with the continuum cross sections [43]. However, updating and
preserving hard constraints using these approaches is computationally expensive [43, 44]. Recent
learning-based models have introduced more expressive representations of soft robot states using
point clouds [18, 19] and meshes [20, 45]. However, these learned representations have not been
connected to policy learning for dexterous manipulation tasks. Addressing this gap, KineSoft pro-
poses a novel framework that leverages proprioceptive sensing and learned shape representations,
based on vertex displacement fields over meshes, to facilitate dexterous manipulation skill learning
in soft robots.

3 Problem Statement

We consider the problem of learning dexterous manipulation skills with a soft robot hand equipped
with internal proprioceptive sensing. Let M denote the true continuous deformation state of the
hand, which is governed by the robot’s mechanical structure and actuated through control inputs
U. Since M is unobservable and high- high-dimensional [46] in practice, we assume access to an
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Figure 2: Proprioception network. A : Network architecture for mesh shape estimation of the soft
fingers. B : Results of domain alignment iterations where the loss converged after 200 iterations.

internal sensor measurement space S (e.g., from strain sensors) that provides indirect information
about the deformation.

The objective is to learn a policy π : M × O → U that maps from the current deformation state
and additional task-relevant observations O (e.g., visual input) to a control action in U. This setting
poses three key challenges: i) Estimating the unobservable deformation state M from the sensor
measurement space S; ii) Learning a reliable mapping from S to M for downstream use in control;
iii) Learning a control policy π that uses M and O to generate actions, where O may include
exteroceptive modalities (e.g., vision) that are complementary to the proprioceptive signals in S.

This presents unique challenges for soft robots compared to rigid systems: the continuous deforma-
tion space M is theoretically infinite-dimensional as a continuum, demonstrations must account for
the robot’s inherent compliance, and the mapping between actuation and deformation is nonlinear or
difficult to simulate in its entirety [43]. The objective is to develop a framework that can effectively
learn and execute manipulation skills while embracing these fundamental characteristics.

4 Method

KineSoft enables soft robot dexterous manipulation through a hierarchical approach that bridges
the gap between kinesthetic teaching and autonomous execution. Our framework comprises five
integrated components: a sensorized MOE-based soft hand with embedded strain sensors, a high-
fidelity mesh-based shape estimation model, a shape-conditioned controller for precise trajectory
tracking, a diffusion-based shape imitation policy, and a low-level controller that tracks desired
shapes. By representing the soft hand’s state through geometric mesh deformations rather than raw
sensor values, KineSoft leverages the natural compliance of soft robots for dexterous skill learning
while maintaining the precision necessary for complex manipulation tasks.

4.1 MOE Soft Robot End-effector

We leverage the multifinger omnidirectional end-effector (MOE) soft robot platform [1], which com-
prises modular finger units that each operate independently. Two servo motors actuate each finger
by applying tension to four tendons (Figure 2A). MOE has a modular design that allows the fingers
to be rearranged into various configurations to suit specific task requirements. In experiments, we
use a three-finger variant, inspired by research on object controllability using three-fingered rigid
end-effectors [47].

Building on the original MOE finger design, we propose embedding low-cost conductive elastic rub-
ber directly into the silicone elastomer body of each finger. The conductive rubber acts as sensors to
measure deformation by varying their electrical resistance as they stretch, providing real-time pro-
prioceptive feedback. Each finger incorporates four of these sensors, compactly positioned between
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the tendons. A data acquisition (DAQ) circuit and board connected to the sensors can record resis-
tance readings at approximately 400 Hz. By seamlessly integrating the sensors into the elastomer
during fabrication, we developed a fully deformable and sensorized finger body. The combined
state spaces from all twelve (12) strain sensors provides our estimate S of the soft robot hand’s true
deformation state space M (Section 3).

4.2 Shape Estimation Model

The shape estimation model maps strain sensor readings R ∈ Rn to vertex displacements of the
MOE fingers. Each of the three fingers contains four embedded strain sensors, giving n = 12 total
resistance values. The model learns a function f that predicts per-vertex deformations conditioned
on both the sensor input and the undeformed mesh:

f(R, {Vj,0}3j=1) = {∆Vj}3j=1,

where Vj,0 ∈ RN×3 denotes the initial vertex positions of finger j, and ∆Vj are the predicted
displacements. We implement f using a FoldingNet-based architecture [48]. For each finger j, an
encoder henc transforms its four resistance values Rj into a latent code zj ∈ R128 as zj = henc(Rj).

A decoder hdec then predicts the displacement of each vertex vi
j,0 by combining its initial position

with zj :
∆vj,i = hdec(v

i
j,0, zj), vi

j,t = vi
j,0 +∆vj,i.

This formulation allows the model to learn local deformation behavior conditioned on global strain
input while preserving mesh topology. Predicting displacements rather than absolute positions im-
proves stability and generalization as shown in comparison to baselines. The model is trained on a
dataset of simulated deformations as described in the Appendix paired with corresponding simulated
strain readings.

4.3 Sim-to-Real Domain Alignment

To bridge the gap between simulation and real-world deployment, we introduce a calibration pro-
cedure to align sensor readings from physical experiments with the simulated deformation model.
Our goal is to determine a set of correction factors κ0, . . . , κn−1, one per sensor, that align the
strain-based deformation estimates in simulation with real-world resistance measurements.

We derive the following objective, based on the sensor model described in the Appendix, to align
simulated deformations with real-world sensor readings:

argmin
κ0,...,κn−1

n−1∑
i=0

T−1∑
t=0

Ç 
Ri,t

Ri,0
− κi

LS
i,t − LS

i,0

LS
i,0

− 1

å2

, (1)

where n is the number of sensors, T is the number of sample frames, Ri,t is the resistance measured
from the i-th sensor at time step t, and LS

i,t is the corresponding simulated internal length of the
i-th sensor at time t The correction factors κi are optimized to compensate for the domain mismatch
between real and simulated sensor responses.

In practice, the true simulated lengths corresponding to each real-world resistance reading are un-
available, and the sensor-to-geometry mapping is not directly observable. Thus, we approximate
this mapping by minimizing the unsupervised Chamfer distance between the observed 3D positions
of points on the soft fingers and the predicted surface points from our shape estimation model:

LUCD =

m−1∑
j=0

∑
pobs∈P(j)

obs

min
ppred∈P(j)

pred

∥pobs − ppred∥2, (2)

where P(j)
obs and P(j)

pred denote the observed and predicted point clouds for the j-th example.

This alignment procedure ensures that the internal deformation estimated from resistance measure-
ments produces a surface mesh consistent with external geometry observations. It connects to the
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Figure 3: Demonstration and KineSoft Rollout for Bottle Unscrewing Task.

overall pipeline by enabling the trained model to generalize from simulation to physical deployment
without requiring paired real-world deformation labels.

4.4 Shape-conditioned Controller

The shape-conditioned controller leverages real-time proprioceptive mesh state estimation of the
MOE fingers to execute desired shape trajectories. For each finger j, the controller compares the
current estimated vertex positions Vt with desired target positions VD

t generated from the policy
trajectory. Each finger is actuated by a pair of antagonistic tendons controlled by two servos. The
actuation directions for each servo pair are represented by unit vectors d2j ,d2j+1 ∈ R2 that cap-
ture the primary deformation modes. The servo adjustments δuj,t for each finger are computed by
projecting the shape error onto these actuation directions:

δuj,t = kp
∑
n

enj,t · [d2j ,d2j+1]
T ,

where kp is a scalar gain and enj,t is the shape error for vertex n defined by ej,t = VD
t,j − Vt,j .

In deployment, the controller clips actions to prevent overloading the actuators. The controller runs
at 100 Hz with the shape estimation at each step, enabling responsive shape trajectory tracking. By
projecting shape errors onto fitted actuation directions, the controller effectively translates desired
deformations into appropriate servo commands despite the complex relationship between tendon
actuation and finger deformation.

4.5 Imitation Policy

The shape estimation model (Section 4.2) provides proprioceptive feedback via predicted surface
vertex positions Vt, while a wrist-mounted RGB-D camera captures external point cloud observa-
tions Pt of the workspace. We train a diffusion policy to imitate manipulation skills using these
complementary inputs.

The policy predicts actions at = {∆Vt,∆pt} that couple surface deformations and end-effector
motion. The state st = {hshape(Vt), hpc(Pt),pt} combines proprioceptive and exteroceptive infor-
mation: hshape is an MLP encoder applied to mesh vertices with temporal correspondence, hpc is a
DP3 encoder for the RGB-D point cloud, and pt is the current end-effector pose.

The diffusion-based imitation policy learns to denoise a vertex-level action trajectory via the reverse
process at−1 = µθ(at, st, t) + σtz, where µθ is a learned denoising network and z ∼ N (0, I).
Combined with the shape-conditioned controller (Section 4.4), the policy enables robust, contact-
rich manipulation by fusing learned high-level intent with precise low-level tracking.

5 Experiments

We evaluate KineSoft through real-world experiments that assess each component of the frame-
work and key design choices. We quantify the accuracy of the shape estimation model, followed
by evaluating the shape-conditioned controller’s ability to track target deformations. Finally, we
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Figure 4: Tasks. We evaluate the performance of the shape-based KineSoft policy across six manip-
ulation tasks. These tasks highlight the advantages of soft robotic hands in contact-rich and delicate
object interaction. Red arrows indicate actuation directions for Servo 1; blue arrows indicate actua-
tion directions for Servo 2.

assess KineSoft policies across six in-hand manipulation tasks involving both rigid and deformable
objects. These experiments demonstrate the effectiveness of shape-based representations for propri-
oceptive control and reliable manipulation, particularly in settings where soft robots offer inherent
advantages.

5.1 Shape Estimation

Table 1: Shape Estimation Fidelity

Method Shape Error [mm]

PneuFlex Sensor 3.70 ± 1.36
DeepSoRo 3.27 ± 1.05
KineSoft (naive) 4.91 ± 2.85
KineSoft (unconstrained) 4.36 ± 3.47
KineSoft (model) 1.92 ± 0.39

We evaluated the proposed shape estimation model
against baselines from the literature: the constant
curvature model [49, 41], an analytical representa-
tion of soft robot deformation, and DeepSoRo [50],
a learning-based point cloud reconstruction method.
In addition, we compared against two ablations of
our approach: a naively calibrated linear mapping
and an unconstrained fully connected model, both
trained using the domain alignment procedure de-
scribed in Section 4.3. Evaluation was conducted using observed point clouds captured from the
physical setup shown in Figure 7, and performance was measured using the unidirectional Chamfer
distance defined in Equation 2. Quantitative results are summarized in Table 1 and visualized in Fig-
ure 6. Our model achieved a shape estimation error of 1.92,mm, representing a 41.3% improvement
over the best baseline (DeepSoRo) and a 60.9% improvement over the linear variant of our method.

5.2 Shape-conditioned Controller Performance

Table 2: Shape Tracking Error Comparison

Method Representation Error [mm]

Strain-tracking Strain 6.20 ± 2.39
KineSoft Mesh 3.29 ± 0.91

We evaluated the proposed shape-conditioned con-
troller against a strain-tracking baseline that directly
uses sensor readings for control as implemented
in prior soft robot manipulation works [3, 51].
For evaluation, we collected reference trajectories
through kinesthetic teaching, where a demonstrator
physically deformed the fingers into desired config-
urations. During execution, the controllers had to track these trajectories using tendon actuation.
This evaluation highlights a fundamental challenge in soft robot imitation: the sensor signals gen-
erated during kinesthetic demonstration (when fingers are manually deformed) differ significantly
from those produced during autonomous execution (when tendons are actuated). The strain-tracking
baseline, which attempts to directly match these sensor readings, struggles with this demonstration-
execution gap, achieving 6.20 mm tracking error. In contrast, the proposed shape-conditioned con-
troller bridges this gap by tracking the geometric shape itself rather than the underlying sensor
signals, achieving 3.29 mm error, a 47 % improvement.
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Table 3: Task success rates on 6 different tasks over 20 trials each comparing the baseline strain-
matching method to the proposed KineSoft.

Bottle Lid Berry Paper Fabric Container
Method Unscrewing Flicking Picking Grasping Pickup Unlidding

Strain Policy 0/20 18/20 7/20 13/20 1/20 3/20
KineSoft 17/20 20/20 16/20 19/20 13/20 14/20

5.3 In-hand Manipulation Task Performance

We evaluated KineSoft on six in-hand manipulation tasks (Figure 4) to showcase both the strengths
of soft robots, such as delicate object handling [52, 53, 54] and contact-rich interaction [1, 55], and
their conventional challenges, including tasks requiring accurate multi-finger coordination [56].

Bottle Unscrewing: MOE must rotate and lift a bottle cap using coordinated finger motion.

Lid Flicking: MOE flicks open a hinged lid on a container.

Berry Picking: MOE gently picks a berry from a soft branch, evaluating precise grasping and com-
pliant contact with fragile objects inspired by prior works on soft robot fruit harvesting [54].

Paper Grasping: MOE initiates contact with and lifts a flat sheet of paper from a table.

Fabric Grasping: MOE conforms around and lifts a loosely draped piece of fabric, highlighting
contact-rich manipulation of deformable objects.

Container Unlidding: MOE grasps and opens the snap-top lid of a plastic container while main-
taining a stable grasp. The task highlights multi-finger coordination and localized force application.

Each task was performed in 20 real-world trials using demonstrations collected via kinesthetic teach-
ing, where the operator directly deforms the soft fingers. During execution, KineSoft reproduces
these deformations through tendon actuation, bridging the sim-to-real gap with learned shape-aware
control. Table 3 reports success rates across all six tasks. KineSoft achieved an 85 % success rate on
Bottle Unscrewing, compared to 0 % for a strain-matching baseline based on a state-of-the-art soft
in-hand manipulation method [51], implemented with a diffusion policy and trained on the same
demonstration data. On Lid Flicking, KineSoft reached 100 % success, while the baseline achieved
90 %. For contact-sensitive tasks such as Berry Picking, Fabric Pickup, and Container Unlidding,
KineSoft achieved success rates between 70 % and 80 %, whereas the baseline remained below 35 %
on all three. These results highlight the effectiveness of shape-based representations for robust con-
trol and reinforce the advantages of soft hands in contact-rich and delicate manipulation settings.

6 Conclusion and Lessons
This paper presents KineSoft, a framework for learning dexterous manipulation skills with soft robot
hands that embraces, rather than fights against, their inherent compliance. The key insight is rec-
ognizing that while this compliance enables intuitive kinesthetic teaching, it creates a fundamental
gap between demonstration and execution, where the deformations and sensor signals during human
demonstration differ substantially from those during autonomous execution through tendon actua-
tion.KineSoft addresses this challenge through a hierarchical approach. A shape estimation model
provides consistent geometric representations across demonstration and execution modes while a
domain alignment method enables robust transfer of simulation-trained models to real hardware and
a shape-conditioned controller reliably tracks the policy’s generated deformation trajectories despite
the different underlying actuation mechanisms. Then, a high-level imitation policy learns to generate
target vertex deformations from demonstrations, capturing the intended manipulation strategy in ge-
ometric grounding. In experiments, results demonstrate that this shape-based hierarchical approach
enables more effective skill transfer than methods that attempt to directly match sensor signals or
joint configurations. This work suggests that successful imitation learning for dexterous soft robots
requires careful consideration of how demonstration and execution modes differ, and appropriate
intermediate representations to bridge this gap.
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7 Limitations

While KineSoft demonstrates effective shape estimation and trajectory tracking for soft robotic ma-
nipulation, several limitations remain. First, the current system lacks explicit force-feedback mech-
anisms, relying instead on kinematic trajectories and deformation states to encode manipulation
skills. This limits precise force control during object interactions. In contrast, human manipula-
tion integrates both proprioception and tactile sensing, suggesting potential benefits from adding
complementary tactile input.

Additionally, although kinesthetic teaching provides an robust approach to demonstrating some dex-
terous tasks, it requires the expert demonstrator to recognize the MOE finger’s workspace limitations
to avoid demonstrating shapes that the MOE cannot reach. In future work, we aim to leverage Ki-
neSoft’s real-time shape estimation to communicate robot affordances to users via a visual user
interface during demonstrations.

Although the sensors used in this work are readily available and low-cost, they introduce fabrication
complexity when integrating into the prior MOE design, which was relatively simple to fabricate.
We also observed that the sensors may not respond dynamically in fast manipulation tasks due to
commonly observed soft body phenomena such as creep and hysteresis, where the sensor signals re-
quire some time to reach equilibrium conditions when stretched quickly. For durability, we included
results on long-term continuous operation and sensor signal deviation in the Appendix.

KineSoft’s shape-conditioned low-level controller weighs the errors from the vertices of the refer-
ence meshes equally. Implicitly, the controller prioritizes the vertices closer to the tip higher because
the displacement tends to be greater further away from the base. For many tasks, this is an appro-
priate weighing as the finger tips play a vital role in performing dexterous in-hand manipulation
tasks [57]. However, some tasks may require different regions of the fingers to be prioritized based
on contact probability.
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[1] U. Yoo, N. Dennler, E. Xing, M. Matarić, S. Nikolaidis, J. Ichnowski, and J. Oh. Soft and

compliant contact-rich hair manipulation and care. In Proc. of IEEE International Conference
on Human-Robot Interaction (HRI), 2025.

[2] K. Gilday, I. Zubak, A. Raabe, and J. Hughes. From rigid to soft robotic approaches for
minimally invasive neurosurgery. arXiv preprint arXiv:2404.14071, 2024.

[3] A. Bhatt, A. Sieler, S. Puhlmann, and O. Brock. Surprisingly robust in-hand manipulation: An
empirical study. arXiv preprint arXiv:2201.11503, 2022.

[4] B. S. Homberg, R. K. Katzschmann, M. R. Dogar, and D. Rus. Robust proprioceptive grasping
with a soft robot hand. Autonomous robots, 43:681–696, 2019.

[5] Y. Yao, U. Yoo, J. Oh, C. G. Atkeson, and J. Ichnowski. Soft robotic dynamic in-hand pen
spinning. arXiv preprint arXiv:2411.12734, 2024.

[6] C. Firth, K. Dunn, M. H. Haeusler, and Y. Sun. Anthropomorphic soft robotic end-effector for
use with collaborative robots in the construction industry. Automation in Construction, 138:
104218, 2022.

[7] S. Abondance, C. B. Teeple, and R. J. Wood. A dexterous soft robotic hand for delicate in-hand
manipulation. IEEE Robotics and Automation Letters, 5(4):5502–5509, 2020.

[8] R. Jitosho, C. E. Winston, S. Yang, J. Li, M. Ahlquist, N. J. Woehrle, C. K. Liu, and A. M.
Okamura. Flying vines: Design, modeling, and control of a soft aerial robotic arm. arXiv
preprint arXiv:2503.20754, 2025.

9



[9] C. Chi, Z. Xu, S. Feng, E. Cousineau, Y. Du, B. Burchfiel, R. Tedrake, and S. Song. Diffusion
policy: Visuomotor policy learning via action diffusion. The International Journal of Robotics
Research, page 02783649241273668, 2023.

[10] M. Memmel, J. Berg, B. Chen, A. Gupta, and J. Francis. STRAP: Robot sub-trajectory re-
trieval for augmented policy learning. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/pdf?id=4VHiptx7xe.

[11] Y. Hu, Q. Xie, V. Jain, J. Francis, J. Patrikar, N. Keetha, S. Kim, Y. Xie, T. Zhang, H.-S. Fang,
et al. Toward general-purpose robots via foundation models: A survey and meta-analysis.
arXiv preprint arXiv:2312.08782, 2023.

[12] Z. Fu, T. Z. Zhao, and C. Finn. Mobile aloha: Learning bimanual mobile manipulation with
low-cost whole-body teleoperation. arXiv preprint arXiv:2401.02117, 2024.

[13] U. Yoo, A. Hung, J. Francis, J. Oh, and J. Ichnowski. Ropotter: Toward robotic pottery and
deformable object manipulation with structural priors. In 2024 IEEE-RAS 23rd International
Conference on Humanoid Robots (Humanoids), pages 843–850. IEEE, 2024.

[14] H. Qi, B. Yi, M. Lambeta, Y. Ma, R. Calandra, and J. Malik. From simple to complex skills:
The case of in-hand object reorientation. arXiv preprint arXiv:2501.05439, 2025.

[15] J. Wang, Y. Yuan, H. Che, H. Qi, Y. Ma, J. Malik, and X. Wang. Lessons from learning to spin
“pens”. In CoRL, 2024.

[16] Y. Qin, W. Yang, B. Huang, K. Van Wyk, H. Su, X. Wang, Y.-W. Chao, and D. Fox.
Anyteleop: A general vision-based dexterous robot arm-hand teleoperation system. arXiv
preprint arXiv:2307.04577, 2023.

[17] Y. Ze, G. Zhang, K. Zhang, C. Hu, M. Wang, and H. Xu. 3d diffusion policy. arXiv preprint
arXiv:2403.03954, 2024.

[18] L. Wang, J. Lam, X. Chen, J. Li, R. Zhang, Y. Su, and Z. Wang. Soft robot proprioception
using unified soft body encoding and recurrent neural network. Soft Robotics, 10(4):825–837,
2023.

[19] U. Yoo, H. Zhao, A. Altamirano, W. Yuan, and C. Feng. Toward zero-shot sim-to-real trans-
fer learning for pneumatic soft robot 3d proprioceptive sensing. In 2023 IEEE International
Conference on Robotics and Automation (ICRA), pages 544–551. IEEE, 2023.

[20] U. Yoo, Z. Lopez, J. Ichnowski, and J. Oh. Poe: Acoustic soft robotic proprioception for
omnidirectional end-effectors. arXiv preprint arXiv:2401.09382, 2024.

[21] O. M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. McGrew, J. Pachocki,
A. Petron, M. Plappert, G. Powell, A. Ray, et al. Learning dexterous in-hand manipulation.
The International Journal of Robotics Research, 39(1):3–20, 2020.

[22] C. Della Santina, C. Duriez, and D. Rus. Model-based control of soft robots: A survey of the
state of the art and open challenges. IEEE Control Systems Magazine, 43(3):30–65, 2023.

[23] T. G. Thuruthel, E. Falotico, F. Renda, and C. Laschi. Model-based reinforcement learning for
closed-loop dynamic control of soft robotic manipulators. IEEE Transactions on Robotics, 35
(1):124–134, 2018.

[24] P. Schegg, E. Ménager, E. Khairallah, D. Marchal, J. Dequidt, P. Preux, and C. Duriez.
Sofagym: An open platform for reinforcement learning based on soft robot simulations. Soft
Robotics, 10(2):410–430, 2023.

[25] S. Bhagat, H. Banerjee, Z. T. Ho Tse, and H. Ren. Deep reinforcement learning for soft,
flexible robots: Brief review with impending challenges. Robotics, 8(1):4, 2019.

10

https://openreview.net/pdf?id=4VHiptx7xe


[26] E. Johns. Coarse-to-fine imitation learning: Robot manipulation from a single demonstration.
In 2021 IEEE international conference on robotics and automation (ICRA), pages 4613–4619.
IEEE, 2021.
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Figure 5: Tasks

B Shape Estimation and Tracking Evaluation

A B

Figure 6: Shape estimation and trajectory tracking performance evaluation. We provide each
of the shape estimation models and controllers with kinesthetically deformed shape trajectories. A :
Shape estimation model comparisons with real-world ground-truth data (red points). B : Shape
tracking comparisons with the real-world ground-truth data (red points), references shapes (red),
and achieved shapes (blue).

C Details on Sensor Model

We assume the embedded sensors are perfectly incompressible and isotropic, a common assumption
in soft body mechanics for highly elastic rubber, particularly when infused with particle fillers [58].
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These fillers, like those used in the off-the-shelf conductive rubbers embedded in MOE, enable the
sensors to exhibit changes in resistivity when stretched. The sensors have a cylindrical shape, so
we model the relationship between the cross-sectional area and the strain in the axial direction for
sensor i at time t ≥ 0 with the incompressibility assumption as:

Li,0Ai,0 = Li,tAi,t, (3)

where Li,0 and Ai,0 are the initial length and cross-sectional area; Li,t and Ai,t are the corresponding
values at time t.

For conductive materials, resistance generally has a linear relationship with strain. The observed
resistance for the sensor indexed at i is given by:

Ri,t = ρi
Li,t

Ai,t
, (4)

where ρi is the conductivity factor, assumed to be constant for sensor i across time. Relating Equa-
tion 3 and Equation 4, we derive:  

Ri,t

Ri,0
− 1 =

Li,t − Li,0

Li,0
. (5)

This relationship is independent of the material conductivity ρi, enabling a direct mapping from
observed resistance to strain. However, in real-world applications, fabrication imperfections, such
as connecting wires to the DAQ boards, can introduce errors into the initial length of the embedded
sensors. These imperfections result in a deviation between the real sensor lengths (LR

i,0, LR
i,t) and

simulated sensor lengths (LS
i,0, LS

i,t):

LR
i,0 = LS

i,0 + ϵi, LR
i,t = LS

i,t + ϵi,

where ϵi is a constant error specific to each sensor i. This error propagates to the strain relationship
as:

LR
i,t − LR

i,0

LR
i,0

=
1

1 + ϵi
LS

i,0

·
LS
i,t − LS

i,0

LS
i,0

. (6)

The constant factor 1
1+

ϵi
LS
i,0

can be denoted as κi ∈ κ, representing the constant correction factor for

sensor i. Substituting this into Equation 5, we obtain: 
Ri,t

Ri,0
− 1 = κi

LS
i,t − LS

i,0

LS
i,0

, (7)

where the observed resistances Ri,t, Ri,0 are measured with the DAQ setup. For the n embedded
sensors, aligning the simulated and observed distributions involves optimizing the constant correc-
tion parameters κ0, κ1, . . . , κn−1.

D Baselines

For shape estimation, we compare with analytical and learning-based baselines:

Constant curvature model [49, 41]. Constant curvature model is a common representation for the
continuum deformation behavior of soft robot that parametrizes the shape with a single curvature
curve [59]. Typically, the independent parameters of the state of the robot are defined by rcurve and
θcurve. Assuming a constant length, Lcurve of the robot, we get the constraint:

Lcurve = rcurveθcurve.

In typical applications, additional term ϕcurve is introduced to represent the plane of bending [46].
We implemented this simplified representation for soft robot shape using the proposed strain model
as outlined in Section 4.3 and fitting rcurve and θcurve to the observed strains in each side of the
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Algorithm 1 Domain Alignment Optimization

Input: Shape predictor fθ, transformations {T}, observations Pobs, initial resistances R0

Initialize θ = {κ ∈ R24, ϕ ∈ R3} ← 0
Initialize CMA-ES optimizer O(θ)
while not converged do

Sample candidates {θ} ∼ O
for each θ do

∆R←
√
R/R0 − 1 ▷ Strain model for resistances

Apply correction: S ← ∆R · κI[∆R<0]

V← fθ(S) ▷ Predict vertices
Ppred ←

⋃
V · T · [Ry(ϕ)|0] ▷ Combine

ℓ← LUCD(Pobs,Ppred) ▷ Compute error
end for
Update O with candidates and losses

end while
return θ∗ with minimum loss

curve. We transformed the cross-section boundary to the curve during the evaluation and measured
the chamfer distance to the reference.

DeepSoRo [50]. DeepSoRo architecture deploys a FoldingNet [48] decoder conditioned on visual
observations to predict the current shape of a deformable body. Crucially, it is trained with chamfer
distance and originally trained on partial real-world shape observations, resulting in partial point
cloud reconstruction outputs without frame-to-frame correspondences. Additionally, the model di-
rectly outputs the point cloud positions in contrast to KineSoft, which learns a deformation field
and produces vertex displacement with frame-to-frame correspondences. We augment DeepSoRo
for evaluation by training the model on KineSoft’s simulated training data and using the proposed
domain alignment process.

Shape-tracking Baselines. For shape tracking and task performance evaluation we provide the
results against the following: Strain Policy: Strain policy, based on prior works that directly use
sensor readings without intermediate representations for learning manipulation policies [51], uses
raw sensor measurements instead of reconstructed shapes. For shape tracking evaluation, we mod-
ified the low-level controller from Section 4.4 to track reference sensor readings directly through
proportional tendon actuation. For task performance evaluation, we trained a diffusion policy using
the same 50 demonstrations we use for KineSoft, but with raw strain signals and wrist-mounted
camera observations as input states.

E Data Generation and Shape Estimation Model Training

To train the model, we generate a large dataset of deformed meshes using SOFA (Simulation Open
Framework Architecture) [60]. We simulate a tetrahedral finite-element mesh of the MOE finger
with a Neo-Hookean hyperelastic material model parameterized by elastic material properties that
are randomized at runtime.

We model the tendon actuation with massless, inextensible cables running through a series of fixed
points within the finger body. We discretize each tendon path to segments defined by 3D attachment
points embedded in the tetrahedral mesh. The cable constraint applies forces to these points to
maintain constant length while allowing sliding, effectively simulating the mechanical behavior of
Bowden cable transmission. The soft body scene is solved with an implicit Euler time integration
scheme and uses a conjugate gradient solver for the system matrices. We generate training data by
randomly sampling tendon actuation commands within the feasible range and recording the resulting
deformed vertex positions and embedded sensor strains. To simulate rich deformation behaviors
including contact-like effects, we apply random external forces to the finger surface. These forces
are randomly applied over time with sufficiently large radii to ensure smooth deformations that
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mimic natural contact interactions, without requiring explicit and difficult-to-model contacts in the
scene.

We train the model using a mean squared error (MSE) loss on vertex displacements:

L =
1

3N

3∑
j=1

N∑
i=1

∥∆vj,i −∆v∗
j,i∥2,

where ∆v∗
j,i represents the ground-truth displacement for vertex i of mesh finger j. This choice of

loss function provides strong supervision by enforcing explicit vertex-wise correspondence between
predicted and ground-truth meshes. Because we leverage simulated data to train the model, we can
exploit the vertex-level correspondences in the meshes. We contrast this to prior works that relied on
chamfer distance loss over real-world partial observations [50], MSE loss ensures that each vertex
learns to track its specific local deformation patterns, enabling precise reconstruction of the full
finger shape.

F Experiment Setup

Projector (Only Used in Calibration)

Wrist-mounted Stereo RGB-D Camera

Sensor DAQ Board

MOE End-effector

Calibration Marker

6 Degree-of-freedom Arm

A B

Figure 7: Simulation and real-world setup. A : Simulated robot workspace and sample of simu-
lated strain signals. B : Real-world robot setup with the projected patterns to improve ground-truth
shape observations for evaluation and calibration.
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G Failiure Cases

We conducted stress testing through 1,000 continuous servo cycles over 14 hours, observing max-
imum signal drift of 8.3% in a sensor (Fig. ??A) that resulted in 0.062 ± 0.0056 mm mean vertex
error. After rest, the signals returned to baseline levels and our original manipulation experiments
were conducted over several weeks without recalibration. We appreciate the reviewers highlighting
this important concern and will update the manuscript with these discussions on long-term sensor
reliability.

KineSoft failures occurred mainly when fingers lost or made unintended contact during manipulation
transitions—a limitation of kinematic imitation without tactile sensing, which we will highlight in
the limitations section. Baseline strain policies failed significantly more, as demonstration strain pat-
terns often cannot be directly reproduced through tendon actuation. The results support KineSoft’s
approach of using shape as an intermediate representation between demonstration and execution
modes.

Sampled Shapes
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Cycle 0
Cycle 1,000

Failure Cases

Unintended Contact 
preventing spinning

Repeated grasp 
failure

Figure 8: Left: Sensor signal degradation after 1000 cycles. Right: Failiure cases for manipulation
tasks.
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H Sensor Signals

Finger 1 Finger 2 Finger 3

Finger 3

Finger 2

Finger 1

Shape Estimation

Figure 9: Sensor signals and corresponding shape estimation
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