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ABSTRACT
Hair-care robots have the potential to alleviate labor shortages
in elderly care and enable those with limited mobility to express
their identities through hair styling. In this work, we highlight
two advantages that soft robotic manipulators have in hair-care
applications: safety through mechanical compliance and sensing
through observing deformation. To demonstrate these advantages,
we introduce a soft robotic end-effector which we call Multi-finger
Omnidirectional End-effector (MOE) for hair-care applications. We
validate that in hair-grasping tasks, MOE exerts 74.1 % less force
on the head while being able to grasp a similar amount of hair
compared to rigid grippers. We further demonstrate that we can
reliably estimate the mesh shape of MOE during interaction with
a head and that we can infer useful information about the head
such as its occluded shape. The results suggest that soft robots are
uniquely advantaged in hair-care tasks.
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1 INTRODUCTION
Hair plays an important role in people’s identities and self-esteem [1,
9]. Notably, the importance of hair to a person’s self-esteem tends to
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Figure 1: Proposed Multi-finger Omnidirectional End-
effector (MOE) and a force-sensorized mannequin head in
contact. Contact between the head and MOE deforms MOE’s
fingers, resulting in safer interaction forces.

increase with age [17]. With aging and loss of independent mobility,
hair care becomes an increasingly time-consuming and difficult
daily task. Despite this, most elderly care and hospice facilities
heavily rely on volunteers for hair-care assistance [3]. Toward ad-
dressing the gap in hair-care services, researchers have proposed
deploying robotic assistance for combing [4, 7]. A notable challenge
in previous works was that human subjects tend to perceive rigid
robots as being “rough.” [4] Hair-care and manipulation tasks addi-
tionally pose a perception challenge for robotic systems because
hair can often occlude the underlying scalp. To safely interact with
the head in the real world, mechanical rigid robotic manipulators
require high-cost force sensors to be safe for human subjects [7].
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Figure 2: Design of the proposed MOE end-effector. Left: ex-
ploded view and assembly of MOE. Right: fully assembled
MOE

We propose that soft robotic manipulators have unique advan-
tages in addressing these challenges in close contact with human
users. A soft robotic manipulator’s compliance makes them safer
in unstructured environments [11] and more robust in contact-rich
manipulation tasks [2]. These properties make soft robotic manip-
ulators particularly useful in human-robot interaction tasks [12].
Furthermore, in human-robot interaction tasks, human subjects
tend to perceive soft robots as being safer than their rigid coun-
terparts [8]. Additionally, soft robotic manipulators deform when
they make contact in contrast to rigid robots [20]. Observing such
deformations offers a promising direction for using soft robots for
interactive perception.

In this work, we propose a soft robotic manipulator that we call
Multi-fingered Omnidirectional End-effector (MOE) for hair-care
applications as shown in Fig. 1. We demonstrate with a testbed
that MOE’s compliant fingers make them uniquely appropriate for
human contact. We also demonstrate that our proposed methods
allow us to reliably reconstruct the complete shapes of the MOE
fingers as they deform in contact with the head. We then explore
the possibility of inferring occluded head geometry from observed
deformations to handle uncertainties in real-world deployment. We
make the following contributions: (1) Design of a novel tendon-
driven soft robotic manipulator that we call MOE, (2) Evaluation of
MOE compared against a rigid robotic gripper on the hair grasping
task, and (3) Extension of a previously proposed single-finger soft
robotic mesh shape estimation pipeline to MOE.

2 RELATEDWORK
Previous works in hair-care robots that we are aware of have fo-
cused on visually estimating hair flow and either following the
existing hair flow directions [4] or using a specifically sensorized
brush and using a feedback controller with a high fidelity force
sensor attached to the end-effector [7]. In contrast to this work,
both prior works use systems with rigid grippers.

Researchers have previously studied soft robotic manipulators’
advantages in various delicate manipulation tasks including food
handling [11], crop handling [6], minimally invasive surgeries [13,
18] and wearable assistive robots [16]. Studies of using soft robotic

Figure 3: Experimental setup for evaluating the proposed
MOE in interaction with a force-sensorized mannequin head.
A: Two-fingered MOE soft manipulator with an RGBD cam-
era. B: Mannequin head with a wig and 6-axis force sensor at
its base.

manipulators for human-robot interaction tasks have demonstrated
efficacy with both task-performance metrics and qualitative user
feedback. To our knowledge, this paper presents the first explo-
ration of the opportunities and advantages presented uniquely by
soft robotic manipulators in hair care.

3 METHODOLOGY
We outline the design, shape estimation pipeline, and evaluation
studies on a force-sensorized mannequin testbed.

3.1 MOE Design
We introduce a soft tendon-driven manipulator that we call Multi-
finger Omnidirectional End-effector (MOE). As shown in Fig. 2,
MOE has two soft fingers molded from silicone with low hardness
(Ecoflex 00-30, Smooth-on). Each finger has four tendons embedded
that are actuated by two servo motors (DYNAMIXEL XC330-M288-
T, Robotis). Each pair of tendons actuated by a single servo motor
controls MOE finger’s range of motion in a bending plane. The de-
sign is largely modular, where each of the fingers is an independent
subsystem that can be detached. MOE design can be extended to
variants with more fingers as needed. In the scope of this work and
the task of hair grasping that we looked at, we determined that
two fingers were sufficient. We placed an RGBD camera (Realsense
D405, Intel) on the wrist of MOE to provide egocentric view depth
images. Red markers are placed on the surfaces of the MOE fingers
for the RGBD camera to track MOE key points as the body deforms.

3.2 MOE Sensing
Shape estimation and representation for soft robots is a challeng-
ing problem because of their complex and high degree-of-freedom
deformation behaviors [15, 20]. The goal of the MOE estimation
pipeline is to infer the overall mesh of the MOE based on the ob-
servation of sparse key point movements. We extend a previously
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Figure 4: Hair grasping evaluation task experimental proce-
dure and sample result at 6.0mm depth. Top: experienced
net forces and key frame images of the experiment with a
baseline rigid gripper. Bottom: experienced net forces and
key frame images of the experiment with the proposed MOE.

proposed POE-M pipeline to multiple fingers [19]. The working
principle of POE-M pipeline relies on As-Rigid-As-Possible (ARAP)
which is framed as an energy minimization problem over mesh
nodes [14].

To guide the shape estimation of MOE, we track the 7 red key
point markers placed on each of the surfaces of MOE fingers as
shown in Fig. 3A. We segment the markers with color thresholds
and apply DBSCAN to cluster the 3D points and find their centers.
In the initial frame, we find the nodes on the initial mesh closest to
the key points and use them as handle points. From the initialization
phase, we account for the movement of each of the key points frame-
to-frame. In practice, some of the key points may become occluded
due to hair getting in the way. To account for this, we remove the
occluded key points from consideration in the ARAP mesh fitting
phase.

To deform the mesh based on the key point movements, we
define the source surface mesh 𝑆 and the deformed mesh 𝑆 ′. As
previously proposed, we include a penalty on the rotations of the
neighboring edges producing mesh manipulation that seems physi-
cally admissible [10]. The energy to minimize is

𝐸smoothed (𝑆, 𝑆 ′) = min
𝑅1,...,𝑅𝑚

𝑚∑︁
𝑘=1

(
∑︁

𝑖, 𝑗∈𝑒𝑘
𝑐𝑖 𝑗𝑘 ∥𝑒𝑖 𝑗 − 𝑅𝑘𝑒𝑖 𝑗 ∥2

+𝜆𝐴
∑︁

𝑒𝑙 ∈𝑁 (𝑒𝑘 )
𝑤𝑘𝑙 ∥𝑅𝑘 − 𝑅𝑙 ∥2) .

For reconstructing the shape full mesh shape of MOE, we treat ver-
tices corresponding to the key points 𝑝1,..., |𝑝𝑘 | as being constrained
to the new positions based on the predicted key-point positions,
and the rest of the mesh vertex positions are moved to minimize
𝐸smoothed.

3.3 Experimental Setup
To extend previous works in the field of hair-care robots, we pro-
pose to study direct contact between the human head and robotic
end-effectors. Previous works have not made direct notes on the

Figure 5: Illustration of forces experienced by the force-
sensorized mannequin head during the hair grasping evalua-
tion experiments. We carried out the experiments at three
different depths into the hair. The depth measurements were
from the point where the end-effector just made contact with
the hair to account for different lengths. MOE exerts mea-
surably less force and torque on the head.

Table 1: Hair Grasping Evaluation

End-effector Depth [mm] Performance Metrics
Max Force [N] ↓ Grasped Hair [mm] ↑

2.0 1.11 4.0
Rigid 4.0 3.38 20.0

6.0 7.67 25.0

2.0 1.09 5.0
MOE 4.0 1.38 18.7

6.0 1.98 22.5
forces experienced by the head. Then, to evaluate the safety of
the proposed MOE system around human users, we developed an
experimental setup that includes a canvas mannequin head with
an attached synthetic hair wig. The base of the mannequin head
is attached rigidly to a 6-axis force sensor to measure the applied
wrench on the head. The head is placed in the center of the robot
arm’s workspace as illustrated in Fig. 3.

4 PRELIMINARY RESULTS
We evaluate on two tasks: hair grasping and MOE shape estimation.

4.1 Task 1: Hair Grasping Evaluation
Many hair-care tasks require the grasping of hair. For example,
rearranging hair often requires grasping hair that is close to the
scalp, and in bimanual manipulation tasks such as cutting hair, a
hand needs to grasp and bundle the hair. We hypothesized that soft
robotic manipulators would be safer and more comfortable for the
human subject in hair manipulation and close-contact tasks.

Toward evaluating the hypothesis, we compared the forces ex-
perienced by the force-sensorized mannequin head with open-
loop experiments, where a rigid parallel jaw gripper (FE Gripper,
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Figure 6: MOE shape estimation experiment images and re-
sults. MOE made contact with the head at three different
positions along the curve of the head. Based on the relative
surface normal of the head, MOE fingers deform differently,
indicating that we can infer head geometry information by
estimating MOE shapes.
Franka Robotics) and the proposed MOE moved to a specified depth
(2.0mm, 4.0mm, 6.0mm) into the hair to grasp. The depths are mea-
sured with respect to the position where the robot is barely making
contact with the hair to account for different lengths of the end-
effectors. As the robot followed specified trajectories, we measured
forces at the mannequin head base. After the grippers grasped
the hair, the robot hand moved up to lift the grasped bundle of
hair. We then measured the minimum packing perimeter of the
bundle of hair. Fig. 4 shows a sample result and the experimental
procedure. Fig. 5 shows the forces and torques experienced by the
force-sensorized mannequin head.

Lower forces and torques experienced by the mannequin head
could indicate reduced discomfort if applied to a human subject.
Concurrently, a hair-care robot will need to be able to grasp hair
that may be close to the scalp, which will likely result in higher
forces experienced by the mannequin head. Then, we note that an
ideal hair-care robot must be able to grasp hair effectively while also
applying minimal force on the head. Table 1 reports the maximum
force experienced by the head at varying depths and the amount of
hair grasped.

We note that at 6.0mm depth, the rigid end-effector exerts 7.67 N
of force on the mannequin head. At the same depth, MOE applied
1.98 N of force. This constitutes a 74.1 % reduction in the maximum
force applied to the head. Meanwhile, on the grasped hair metric,
MOE grasped approximately 10 % less hair. A potential explanation
of this marginal decrease in the amount of hair grasped is that
the compliance of MOE allowed some of the grasped hair to be
pried away as the end-effector moved away. This is partially sup-
ported by the fact that as the rigid gripper moved away from the
head, the mannequin head experienced large changes in the forces
applied, indicating possible hair-pulling by the end-effector. This
change in forces as the robot hand moves away is not as evident in
experiments with MOE.

4.2 Task 2: MOE Shape Estimation
MOE’s ability to deform in response to contact with the scalp of
the head can help us understand the underlying shape of the head

better during hair-care tasks. However, to take advantage of the
deformation for perception, we need to be able to estimate the
shape of MOE reliably. To validate the efficacy and usefulness of
the MOE shape estimation pipeline, we performed an experiment
where MOE pushed against the side of the head at three different
positions along the head as shown in Fig. 6.

Then, by tracking the key points along MOE’s fingers, we ap-
ply the MOE shape estimation pipeline. Fig. 6 shows the resulting
estimated deformed shapes of the MOE fingers with their corre-
sponding point cloud observations and the initial shape of the
fingers. Notably, the shape estimation is precise enough that we
can assess what part of the head’s curve MOE is touching based on
which of the two fingers is deforming more with contact, assuming
the known pose of the hand. From the top view as shown in Fig. 6,
when MOE is touching the head from the left side, we can observe
that the right finger deformed noticeably more than the left finger
did, based on the curvature of the head. The opposite is true on the
right side of the head. When MOE touches the middle of the head’s
curve, both fingers deform similarly. These results suggest that the
shape estimates of the deformed soft robot fingers can be utilized
for inferring useful information about the head in hair-care tasks.

5 CONCLUSION
In this work, we introduce a unique soft robotic manipulator for hair
manipulation and care tasks that we call MOE. The results suggest
that in comparison to its mechanically rigid counterparts, MOE is
safer in close contact with a head and that observing deformations
of MOE can provide us with useful information about the scalp
morphology that is occluded by hair. The experimental results with
the mannequin testbed indicated that soft robots such as MOE could
be effectively exploited in hair-care tasks.

A limitation of this study was that the experiments were con-
ducted with a force-sensorized mannequin head and not with hu-
man subjects. The head-robot interaction data presented in this
work suggested, however, that contact withMOE on the head would
be safer and more comfortable than contact with a rigid gripper.
We will run user study experiments to evaluate the system with
human subjects in the future.

We will also explore how we can estimate MOE contact condi-
tions with proprioceptive sensing and how we can best represent
the underlying scalp structure that we can update with each in-
teraction for our future work. Toward this end, we will explore
Gaussian process implicit surface [5] as the representation of the
scalp shape, which would allow us to not only continuously rep-
resent the surface of the scalp but also enable uncertainty-aware
planning of hair manipulation trajectories toward safer and more
reliable hair-care robotic systems that can be deployed in the real
world.
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