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Abstract

Accurately estimating hand pose and hand-object contact events is essential for
robot data-collection, immersive virtual environments, and biomechanical analysis,
yet remains challenging due to visual occlusion, subtle contact cues, limitations
in vision-only sensing, and the lack of accessible and flexible tactile sensing. We
therefore introduce VibeMesh, a novel wearable system that fuses vision with
active acoustic sensing for dense, per-vertex hand contact and pose estimation.
VibeMesh integrates a bone-conduction speaker and sparse piezoelectric micro-
phones, distributed on a human hand, emitting structured acoustic signals and
capturing their propagation to infer changes induced by contact. To interpret these
cross-modal signals, we propose a graph-based attention network that processes
synchronized audio spectra and RGB-D-derived hand meshes to predict contact
with high spatial resolution. We contribute: (i) a lightweight, non-intrusive visuo-
acoustic sensing platform; (ii) a cross-modal graph network for joint pose and
contact inference; (iii) a dataset of synchronized RGB-D, acoustic, and ground-
truth contact annotations across diverse manipulation scenarios; and (iv) empirical
results showing that VibeMesh outperforms vision-only baselines in accuracy and
robustness, particularly in occluded or static-contact settings.

1 Introduction

Accurately estimating human hand pose and contact is critical for robot teleoperation [30, 59, 9, 55],
virtual reality [52, 1], and biomechanical analysis [10, 35, 31]. In all of these settings, knowing when
and where the hand touches the environment—together with its configuration—enables reasoning
about task phases, distinguishing exploration from manipulation, and inferring force dynamics.
Unfortunately, real-world contact sensing is hard: occlusions, limited sensor viewpoints, and subtle
touch events routinely confound purely visual approaches.

Vision-based methods typically estimate contact indirectly, pairing RGB or depth observations
with strong priors on object geometry and canonical hand poses [14, 4, 54, 41]. Model-based
fitting can help [47, 48, 20], but still fails under poor lighting and suffers from ambiguities due
to occlusion. Direct tactile solutions, for example, capacitive and piezoelectric gloves [24, 18] or
full-body suits [15], offer better signal fidelity at the cost of bulk, expense, and limited practicality.
Meanwhile, promising advances in wearable acoustics [57] and cross-modal learning [43] have yet to
be exploited for dense hand-object contact estimation.

We propose bridging this gap with a visuo-acoustic sensing approach that delivers joint pose- and
contact-estimation. A lightweight bone-conduction speaker, mounted on the wrist, emits a signal
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Figure 1: Overview of VibeMesh. Our visuo-acoustic contact estimation architecture predicts per-
vertex contact by integrating audio embeddings with hand-mesh features. During training, it leverages
audio with hand meshes and contact annotations jointly reconstructed from two synchronized RGB-D
camera streams; at inference, it operates on audio and a hand mesh reconstructed from a single,
partially occluded, RGB view, demonstrating robustness under visual ambiguity.

that consists of a wide range of acoustic frequencies (a process called ‘broadband probing’), whose
propagation behavior changes whenever the hand changes configuration or touches an object. A
sparse array of piezoelectric contact microphones on the fingers records these shifts, providing rich,
self-generated cues that remain informative even when the hand is static or visually occluded. To
interpret them, we propose VibeMesh: a cross-modal graph-attention network that fuses spectral
audio features with a mesh-based MANO [33] hand representation to predict per-vertex contact labels
from synchronized audio and RGB input (Fig. 1).

This paper contributes: (i) a wearable visuo-acoustic platform for contact-aware hand tracking;
(ii) VibeMesh, a cross-modal graph-attention architecture that fuses acoustic and visual cues for dense
contact prediction; (iii) a dataset of time-aligned RGB-D, audio, and ground-truth contact annotations
across diverse grasps; and (iv) thorough evaluation across users and objects demonstrating improved
accuracy and robustness under occlusions, diverse object properties, and static-contact scenarios
compared against state-of-the-art baselines.

2 Related Works

2.1 Visual Hand Pose and Contact Estimation

Researchers have extensively studied vision-based hand pose and contact estimation motivated by its
application to VR/AR/XR [52, 1, 25, 5], robotics [30, 59, 9, 55, 27], and kinesiology [2, 46]. The
ubiquity of cameras in wearable devices and everyday environments makes vision a convenient and
accessible sensing modality [58].

Classical approaches primarily relied on template matching and silhouette-based techniques [12, 34].
More recent methods leverage large-scale synthetic [22, 7] or real-world datasets [53, 39, 26, 8, 16, 61]
and expressive models to regress 2D keypoints or full 3D meshes from monocular RGB inputs [60, 14].
Transformer-based architectures [19, 17, 51, 29] and physics-informed pipelines [47, 45] have further
improved pose estimation accuracy and robustness.

However, vision-only methods remain fundamentally limited by self-occlusion and inherent visual
ambiguities, particularly during hand-object interactions [13]. To address these limitations, VibeMesh
incorporates audio as an additional sensing modality. By exploiting the rich temporal and spectral
structure of contact-induced sounds, which reflect changes in the lumped acoustic properties of the
hand-object system, VibeMesh learns to disambiguate visually similar hand poses and to localize
contact more precisely than vision-only approaches.
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Figure 2: VibeMesh data collection setup. (a) Our multi-view capture station with two calibrated
ZED Mini RGB-D cameras positioned at complementary angles to minimize occlusion during hand-
object interaction. (b) Custom-designed piezoelectric microphone rings worn on each finger, with the
bone-conduction speaker mounted on the wrist. Each ring contains a 10 mm piezoelectric disc sensor
connected to a Maono USB sound card. (c) The diverse set of 19 objects used in our experiments
includes items from YCB and HOPE datasets with varied geometries, materials, and affordances to
evaluate across different manipulation scenarios.

2.2 Multi-Modal Human Pose Tracking

To address the inherent limitations of vision-only systems, recent work has explored incorporating
additional sensing modalities such as tactile [28, 42, 11], EMG [37, 56, 36, 23], and audio [21, 50, 49,
38]. These modalities provide complementary signals that capture muscle activity, contact forces, and
acoustic transients associated with physical interactions, enabling robust pose and contact estimation
in the presence of occlusion or visual ambiguity.

Tactile and stretchable sensors offer direct measurements of contact and deformation but often require
expensive, form-fitting gloves or embedded skins that can restrict natural user motion [3]. EMG-based
approaches infer pose from muscle activation, yet are sensitive to electrode placement and prone
to signal drift or degradation due to user fatigue [36, 40]. Additionally, tactile sensor-embedded
gloves generally suffer from low spatial resolution, often segmenting the hand into a few contact
patch regions [37]. In contrast, audio sensing offers an indirect but non-intrusive alternative [57],
with sound carrying rich temporal and spectral cues indicative of contact timing, material properties,
and dynamic interactions—even when visual signals are occluded. By leveraging synchronized
audio-visual signals, VibeMesh learns to disambiguate occluded hand poses and accurately localizes
contact events, while minimizing reliance on wearable or invasive instrumentation.

3 Methods

VibeMesh consists of three stages: data collection, vision-based ground-truth contact labeling, and
model training. In the data collection stage, we capture multi-model recordings by synchronizing
two RGB-D cameras with a set of wearable acoustic sensors. Next, we merge the video streams to
produce ground-truth 3D hand poses and contact annotations. For model training, we learn a network
that fuses mesh features from a graph-attention encoder with CNN-extracted audio embeddings,
optimizing contact prediction via binary cross-entropy against the ground-truth contact labels.

3.1 Visuo-Acoustic Hand-Object Interaction Data Collection

We develop a system that integrates wearable acoustic sensors with RGB-D cameras to capture
multi-model data for hand-object interactions. We collect a dataset from multiple users performing a
wide range of grasping conditions.

Wearable Microphones and Speaker For active acoustic sensing, we use an Adafruit bone-
conduction speaker to generate white noise as the signal, paired with five contact microphones
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Figure 3: VibeMesh ground-truth hand pose and contact annotation pipeline. Our multi-view
dataset collection approach integrates data from two RGB-D cameras to generate accurate hand
meshes and contact annotations. Starting with RGB input from both cameras, we use SAM2 [32]
for hand segmentation to extract point clouds (PC), while HaMeR [29] generates initial MANO-
based hand meshes. These components are fused through calibrated camera extrinsics, with ICP
registration aligning the meshes to the combined point cloud. The blended mesh is validated against a
chamfer distance threshold (dCD), discarding frames with poor alignment. For valid frames, we track
object pose using ArUco markers with ICP refinement, then we compute proximity between hand
vertices and the object surface, generating per-vertex binary contact labels with a 5-mm threshold.
This pipeline creates high-quality ground-truth data for training our visuo-acoustic model even in
challenging contact-rich scenarios.

(10 mm piezoelectric discs) for signal acquisition at a sampling rate of 44.1 kHz. Each contact
microphone is interfaced with a Maono USB sound card and mounted onto a 3D printed PLA ring,
sized appropriately for specific user fit. During data collection, participants wear the rings on their
fingers, with the speaker secured to their wrist using an elastic band (Fig. 2b).

RGB-D Cameras To obtain high-quality ground-truth labels for hand pose and contact, we use two
ZED Mini stereo RGB-D cameras positioned at complementary viewing angles (Fig. 2a) to reduce
occlusions. Both cameras record synchronized data at a resolution of 1080p and a frame rate of
30 fps, and operate with Zed AI disparity estimation to enhance depth map resolution and accuracy.

Data Collection Procedure Five right-handed participants (3 male and 2 female) with varied hand
and finger dimensions took part in data collection under IRB approval. We selected 19 objects with
high-quality meshes varying in geometry, mass, and material (Fig. 2c): 14 from the YCB dataset [6],
3 from the HOPE dataset [44], and 2 PLA-printed replicas matching 2 YCB objects. Each participant
completed five 60-second sessions per object, during which they repeatedly grasped and released
the item and were instructed to creatively explore different grasp poses to ensure a diversity of hand
poses and contact conditions.

3.2 Vision-Based Hand Pose and Contact Estimation

We take a vision-based approach to obtain ground-truth contact labels (Fig. 3), addressing occlusion
by fusing hand reconstructions from both camera views. For object tracking, we use ArUco markers
with Iterative Closest Point (ICP) refinement to balance accuracy and efficiency.

Multi-view Hand Pose Fusion To reconstruct the hand pose, we integerate RGB-D from 2
complementary views with learned mesh priors. For each 60-s recording, we segment 3 keyframes
per camera using SAM2 [32], and propagate these masks to extract hand point clouds across time.
In parallel, HaMeR [29] estimates anatomically plausible hand meshes with 778 vertices using
MANO [33], which enforces consistent topology and incorporates learned kinematic priors. We
first fuse the two hand point clouds using calibrated camera extrinsics and align each mesh to the
fused point cloud via ICP. Then we merge the two ICP-aligned meshes using As-Rigid-As-Possible
(ARAP) deformation, guided by the local geometry agreement. If the blended mesh fails to align with
the fused point cloud, as measured by a chamfer distance threshold, we discard the corresponding
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frames to enhance label reliability. To ensure robust, stable tracking, we also mount an ArUco marker
on the user’s wrist and perform an additional ICP alignment to that marker’s pose, constraining the
hand mesh to a reasonable global location. This joint fusion gives an accurate, temporally coherent
3D reconstruction of the hand.

Object Tracking We attach an ArUco marker to each object and detect its 6-DoF pose relative to
the camera in every frame. Using this initial estimation, we align the object mesh accordingly. To
improve accuracy, the pose is further refined via ICP registration between the mesh and the depth
data. This refinement yields accurate, frame-wise tracking of the object’s position and orientation.

Contact Estimation With hand and object meshes registered in a shared coordinate frame, we
assign a binary contact label to each of hand mesh vertices based on proximity. A vertex is marked in
contact if its nearest point on the object lies within a 5-mm threshold. This approach yields dense,
frame-level contact annotations that are geometrically consistent and robust to occlusion.

3.3 VibeMesh Model

The VibeMesh architecture (Figure 1) consists of three main components: an audio encoder, a mesh
encoder, and a cross-modal fusion module for contact prediction.

Audio Encoder We process the continuous multi-channel acoustic signals to isolate and enhance
contact-relevant features through the following steps: (i) reference subtraction, where a baseline
acoustic profile, captured during the first 5 ms of each recording when the hand is free-floating without
contact, is subtracted from subsequent frames to isolate contact-induced changes; (ii) temporal
alignment, where the waveform is segmented into 35-ms windows corresponding to each video frame
(30 fps) with shifting windows to maintain synchronization between modalities; (iii) spectrogram
extraction, using a short-time Fourier transform (1024-point FFT, 512-point hop length) to yield
time-frequency representations for all five microphone channels; and (iv) normalization, applying
frequency-bin normalization followed by per-channel standardization to ensure consistent feature
representation and mitigate variations in microphone sensitivity introduced by various factors such as
manufacturing variance.

This preprocessing yields aligned spectrograms that capture the characteristic spectral changes
when the hand contacts objects. To extract discriminative features from these spectrograms, we
use a pretrained VGG backbone that we finetune. The network processes each microphone channel
independently before channel-wise feature fusion through self-attention, allowing the model to
adaptively weight signals based on their relevance to contact events. The final audio embedding vector
zaudio ∈ R256 encodes the complex acoustic patterns resulting from both hand pose configuration and
object contact interactions, providing complementary information to the visual modality.

Mesh Encoder The mesh encoder processes the hand geometry using a hierarchical graph neural
network that preserves the mesh’s topological structure. Given a hand mesh with N = 778 vertices
and an adjacency matrix derived from mesh connectivity, we apply a series of graph convolutional
operations:

H(1) = ReLU(GCN(X,A)) (1)

H(2) = ReLU(GCN(H(1),A)) (2)

H(3) = GAT(H(2),A), (3)

where X ∈ RN×3 represents vertex coordinates, A is the adjacency matrix, GCN denotes graph-
convolutional layers, and GAT represents a graph-attention layer with 4 attention heads. The resulting
node embeddings H(3) ∈ RN×256 capture local geometric features for each vertex. In our notation,
H(l) represents the feature matrix for all vertices at the l-th layer of the graph neural network, while
h
(l)
i denotes the feature vector for vertex i at layer l. We compute a global mesh representation using

a global attention pooling layer:

zmesh =
∑

i = 1Nαi · h(3). (4)

This hierarchical approach enables the model to capture both local vertex-level features and global
hand configuration information. A key insight with this graph-based approach is that the hand’s
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kinematics and use often creates long-range dependencies among contacts, where grasping typically
engages opposing surfaces and are pose-dependent. The VibeMesh architecture leverages this with
progressively larger receptive fields in early layers followed by attention mechanism that can model
anatomically far but functionally correlated contact regions. This information is pooled together
while preserving relevant contact cues. This information is complemented by the acoustic modality
to disambiguate contact conditions given the present pose of the hand.

Cross-Modal Fusion and Contact Prediction The fusion module combines audio and mesh
representations to predict per-vertex contact probabilities. First, we concatenate global features from
both modalities zglobal = [zaudio; zmesh].

This combined representation is processed through an MLP to extract cross-modal features:

zfused = f(zglobal) (5)

We then compute per-vertex contact predictions by combining local vertex features with the global
cross-modal representation:

vi = [h
(3)
i ; zfused] (6)

αi = σ(ga(vi)) (7)
ŷi = σ(gp(vi ⊙ αi)), (8)

where h
(3)
i represents the feature vector for vertex i, αi is an attention weight, and ŷi is the predicted

contact probability. This attention mechanism allows the model to focus on the hand’s most relevant
regions based on geometric and acoustic cues.

3.3.1 Training Procedure

We train our model using a weighted binary cross-entropy loss to address the significant class
imbalance inherent in contact estimation, where contact vertices typically constitute only 5–10 % of
the total vertices:

L = − 1

N

N∑
i=1

[w1yi log(ŷi) + w0(1− yi) log(1− ŷi)], (9)

where yi ∈ {0, 1} is the ground-truth contact label for vertex i, and w1 and w0 are class weights for
the positive (contact) and negative (non-contact) classes, respectively. We compute these weights
inversely proportional to class frequencies in each training batch:

w1 =
N

2 ·
∑N

i=1 yi
, w0 =

N

2 ·
∑N

i=1(1− yi)
. (10)

This weighting scheme penalizes false negatives more heavily than false positives, encouraging the
model to correctly identify the sparse contact regions despite their underrepresentation in the training
data.

3.4 Implementation Details

VibeMesh’s mesh encoder has a hierarchical graph neural network with two GCN layers (64 and 128
channels) followed by a 4-headed graph attention layer (256 channels). We use the MANO [33] hand
mesh topology to define edge connectivity for message passing operations. For training, we used the
Adam optimizer with an initial learning rate of 0.001, batch size of 32 with gradient accumulation for
effective batch sizes of 512, and a reduce-on-plateau scheduler with a factor of 0.5 and patience of
5 epochs. To mitigate overfitting, we utilize dropouts (p = 0.2–0.3) throughout the network. The
models were trained for 20 epochs on NVIDIA RTX 4090 GPUs. Each model took around 15 hours
to train.

4 Experiments

We conducted an evaluation of VibeMesh to assess its effectiveness in hand-object contact estimation
across diverse scenarios. Our experiments were designed to validate key aspects: (1) the accuracy
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Table 1: Performance comparison across different input modalities. We report average F1 Score (↑)
and average Chamfer Distance (↓), along with performance on unseen objects and subjects.

Method Modality Avg F1 (↑) Avg Chamfer (↓) Unseen Obj F1 (↑) Unseen Subj F1 (↑) Unseen Obj Chamfer (↓) Unseen Subj Chamfer (↓)
Hold [14]
(Baseline) RGB 0.1171 ± 0.0974 31.33 ± 27.36 mm 0.1431 ± 0.1026 0.1325 ± 0.0889 46.55 ± 13.45 mm 19.92 ± 5.489 mm

VibeMesh
(Proposed) RGB + Audio 0.327 ± 0.122 5.487 ± 1.612 mm 0.288 ± 0.111 0.302 ± 0.116 6.042 ± 1.755 mm 6.828 ± 1.704 mm

of the proposed visuo-acoustic approach compared to a vision-only baseline, (2) the robustness
of the system under challenging conditions like occlusion and complex object geometry (3) the
generalization capabilities across unseen objects and users.

We first describe our evaluation metrics to test both contact classification-based accuracy measures
and geometric accuracy. We then present quantitative results comparing VibeMesh to state-of-the-art
vision-only baselines, followed by ablation studies that isolate the contribution of each modality and
architectural component. Finally, we showcase qualitative results highlighting specific scenarios
where our approach excels, particularly in cases where vision alone struggles to accurately determine
contact regions.

4.1 Evaluation Metrics

We evaluate contact estimation with two complementary metrics: label accuracy and geometric
precision. Both provide insight into how well VibeMesh may work in comparison to state-of-the-art
baselines. For label accuracy, we use the F1 score, defined as:

F1 =
2 · P ·R
P +R

, (11)

where P , precision, represents the fraction of predicted contacts that are true: P =
|Cpred∩Ctrue|

|Cpred| , and

R, recall, quantifies the fraction of true contacts that are predicted: R =
|Cpred∩Ctrue|

|Ctrue| . This metric
effectively penalizes both false positives and false negatives in contact estimation, and a higher F1
score indicates better performance.

For geometric precision, we compute the chamfer distance (dCD) between the set of predicted contact
vertices Vpred and the set of ground-truth contact vertices Vtrue:

dCD(Vpred,Vtrue) =
1

2|Vpred|
∑

x∈Vpred

min
y∈Vtrue

∥x− y∥+ 1

2|Vtrue|
∑

y∈Vtrue

min
x∈Vpred

∥x− y∥. (12)

This metric averages the squared nearest-neighbor distances in both directions between the two sets,
so a low chamfer distance indicates that predicted contact vertices lie very close in R3 to the true
contacts. Together, the F1 score and chamfer distance ensure our evaluation captures both correct
classification of contact regions and their localization with high spatial fidelity.

4.2 Results

Our experiments demonstrate that VibeMesh noticeably outperforms vision-only and audio-only
approaches across various scenarios. Table 2 shows that VibeMesh achieves an average F1 score of
0.327, representing a 179.4% improvement over the state-of-the-art vision-only Hold [14] baseline
(F1 score of 0.117). The substantial performance gap is evident in the chamfer distance metric,
where VibeMesh (5.487 mm) achieves an 82.5% reduction compared to the vision-only baseline
(31.33 mm). This supports the complementary nature of the visuo-acoustic approach, where each
modality contributes unique information about contact conditions, which we study further in ablation
studies in the later sections.

When analyzing performance on the challenging case of unseen objects, VibeMesh demonstrates
robust generalization capabilities with an F1 score of 0.288, significantly outperforming the vision-
only baseline (0.143) by 101.4%. This suggests that our cross-modal approach captures generalizable
features of hand-object interactions that transfer effectively to novel objects of different geometries
and materials.
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Figure 4: Qualitative Results. Each column represents a different test condition: unseen object with
seen subject, seen object with seen subject, unseen object with unseen subject, and seen object with
unseen subject. The rows show: (1) input RGB images to the models with the subjects interacting with
objects while wearing the active acoustic sensing platform (2) ground-truth hand-object interaction
(GT HOI) visualizations showing 3D hand meshes and object models (3) ground-truth contact
labels with contact vertices highlighted in green (4) contact prediction results from the vision-only
baseline [14], showing substantial false negatives (missing contacts) and false positives (incorrect
contact regions) in red (5) VibeMesh predictions, demonstrating noticeable improvements in contact
localization across all generalization scenarios. We note that VibeMesh largely identifies contact
points even in challenging cases with partial occlusion and novel objects/subjects.

Similarly, the chamfer distance on unseen objects (6.042 mm) shows an 87.0% improvement over the
vision-only approach (46.55 mm), indicating that our method accurately localizes contact points even
on previously unseen geometries. Cross-user evaluation further highlights VibeMesh’s generalization
abilities across different hand sizes and interaction styles, maintaining an average F1 score of 0.302.
This represents a 7.6% decrease from the overall average, indicating that the learned visuo-acoustic
features capture fundamental patterns of hand-object contact that transcend individual differences in
hand geometry and manipulation behavior.

The cross-user chamfer distance (6.828 mm) shows a 65.7% improvement over the vision-only
baseline (19.92 mm), demonstrating that our approach maintains spatial precision even when applied
to previously unseen hand geometries. Qualitative results in Figure 4 illustrate several challenging
scenarios where VibeMesh excels. Under partial occlusion of object geometry and hand, where the
vision-only baseline struggles to accurately determine contact regions, VibeMesh ’s visuo-acoustic
approach correctly identifies contact regions by leveraging the acoustic signals that propagate through
the hand.
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Table 2: Performance comparison across different input modalities. We report average F1 Score (↑)
and average Chamfer Distance (↓), along with performance on unseen objects and subjects.

Method Modality Avg F1 (↑) Avg Chamfer (↓) Unseen Obj F1 (↑) Unseen Subj F1 (↑) Unseen Obj Chamfer (↓) Unseen Subj Chamfer (↓)
w/o Audio RGB 0.096 ± 0.071 9.853 ± 2.140 0.078 ± 0.062 0.082 ± 0.060 10.215 ± 2.356 9.934 ± 2.218
w/o Vision Audio 0.218 ± 0.103 7.642 ± 1.872 0.186 ± 0.092 0.195 ± 0.098 8.124 ± 2.065 7.985 ± 1.943
w/o Fusion Module RGB + Audio 0.287 ± 0.115 6.319 ± 1.743 0.251 ± 0.108 0.265 ± 0.112 6.875 mm ± 1.826 6.742 ± 1.798 mm

VibeMesh RGB + Audio 0.327 ± 0.122 5.487 ± 1.612 mm 0.288 ± 0.111 0.302 ± 0.116 6.042 ± 1.755 mm 6.828 ± 1.704 mm

4.3 Baselines and Ablation

We conduct an ablation study to examine the contribution of each component in the VibeMesh
architecture, with results presented in Table 2. Removing the audio modality (“w/o Audio”) results in
a 70.6% decrease in F1 score and an 80.0% increase in chamfer distance, confirming that acoustic
signals provide critical information for contact estimation that vision alone cannot capture. This
degradation is most pronounced during contact-rich cases, where visual cues become less reliable.

Conversely, the “w/o Vision” variant—which relies solely on acoustic features—shows a 33.3%
reduction in F1 score compared to the full model. While acoustic sensing excels at detecting
transient events and materials properties, it lacks the spatial precision that visual information provides,
particularly for localizing contacts on the hand mesh. This underscores the complementary nature of
the two modalities.

The “w/o Fusion Module” variant, which processes audio and visual features independently before
simple concatenation, shows a 12.2% decrease in F1 score. This highlights the importance of our
cross-modal attention mechanism for integrating information from both modalities. The attention-
based fusion learns modality-specific reliability, focusing on acoustic cues when vision is unreliable
and leveraging visual precision when available.

5 Conclusion

We present VibeMesh, a novel visuo-acoustic approach for hand pose and contact estimation that
integrates lightweight wearable acoustic sensors with visual observation. Our results demonstrate that
this multi-modal system significantly outperforms vision-only approaches, particularly in challenging
scenarios involving occlusions and static contacts. By fusing complementary information from
acoustic propagation patterns and visual hand reconstruction, VibeMesh achieves more robust and
accurate contact estimation across diverse objects and users.

VibeMesh’s key insight to the task is that hand-object contacts modify the acoustic transmission
properties of the hand in ways that can be measured and interpreted, even when vision may face
contact condition ambiguities and fail to capture these interactions. VibeMesh’s graph-based attention
network effectively integrates these cross-modal signals, learning to leverage the strengths of each
modality while compensating for their individual limitations. The result is a contact estimation
system that maintains high performance across varied conditions.

6 Limitations

While VibeMesh demonstrates consistent improvements over vision-only approaches, it has limita-
tions. First, although the piezoelectric contact microphones mechanically reject ambient noise by
attending to only solid contact-based sound transmission, we did not include results on VibeMesh’s
robustness to exceptionally loud environments. However, we note that although common ambient
sounds such as verbal conversations were present during data collection, the microphone signals
were largely unaffected. Second, we relied on multi-view camera systems with fiducial markers
for perceiving hand poses and hand-object interactions, which are inherently indirect methods of
observing contacts. Although there are some commercially available force or contact sensorized
gloves that could enable us to collect hand-object interactions directly, they are expensive and suffer
from low spatial resolution. Finally, VibeMesh largely treats pose and contact estimation in a se-
quential manner, where we first estimate pose with a visual model and estimate contact conditioned
on both the pose estimation and acoustic signals. In the future, we may improve on the approach
by integrating both vision and acoustic signals to simultaneously reason about pose and contact to
benefit from both modalities at each step.
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